85 research outputs found

    Artificial Extracellular Matrix Proteins Containing Phenylalanine Analogues Biosynthesized in Bacteria Using T7 Expression System and the PEGylation

    Get PDF
    In vivo incorporation of phenylalanine (Phe) analogues into an artificial extracellular matrix protein (aECM-CS5-ELF) was accomplished using a bacterial expression host that harbors the mutant phenylalanyl-tRNA synthetase (PheRS) with an enlarged binding pocket. Although the Ala294Gly/Thr251Gly mutant PheRS (PheRS**) under the control of T5 promoter allows incorporation of some Phe analogues into a protein, the T5 system is not suitable for material science studies because the amount of materials produced is not sufficient due to the moderate strength of the T5 promoter. This limitation can be overcome by using a pair of T7 promoter and T7 RNA polymerase instead. In the T7 expression system, it is difficult, however, to achieve a high incorporation level of Phe analogues, due to competition of Phe analogues for incorporation with the residual Phe that is required for synthesis of active T7 RNA polymerase. In this study, we prepared the PheRS** under T7 promoter and optimized culture condition to improve both the incorporation level of recombinant aECM protein and the incorporation level of Phe analogues. Incorporation and expression levels tend to increase in the case of p-azidophenylalanine, p-iodophenylalanine, and p-acetylphenylalanine. We evaluated the lower critical transition temperature, which is dependent on the incorporation ratio and the turbidity decreased when the incorporation level increased. Circular dichromism measurement indicated that this tendency is based on conformational change from random coil to β-turn structure. We demonstrated that polyethylene glycol (PEG) can be conjugated at reaction site of Phe analogues incorporated. We also demonstrated that the increased hydrophilicity of elastin-like sequences in the aECM-CS5-ELF made by PEG conjugation could suppress nonspecific adhesion of human umbilical vein endothelial cells (HUVEC)

    A Rare Presentation of Invasive Aspergillosis: An Asymptomatic Man with an Abscess Localized to a Parietal Pleura

    Get PDF
    Aspergillosis is an infection caused by Aspergillus species, and it manifests in various clinical presentations. We describe the case of a 73-year-old man with a small area of thickening on the thoracic wall detected by computed tomography. Surgical resection confirmed the diagnosis of an Aspergillus abscess. We report this case in view of the rarity of Aspergillus abscess localized to a parietal pleura without any signs of lung parenchymal involvement. After a thorough literature review, we consider this could be the first report of this manifestation. Accumulation of similar cases will be necessary to help spread recognition of this condition

    Impact of early treatment with intravenous vasodilators and blood pressure reduction in acute heart failure

    Get PDF
    Objective Although vasodilators are used in acute heart failure (AHF) management, there have been no clear supportive evidence regarding their routine use. Recent European guidelines recommend systolic blood pressure (SBP) reduction in the range of 25% during the first few hours after diagnosis. This study aimed to examine clinical and prognostic significance of early treatment with intravenous vasodilators in relation to their subsequent SBP reduction in hospitalised AHF. Methods We performed post hoc analysis of 1670 consecutive patients enrolled in the Registry Focused on Very Early Presentation and Treatment in Emergency Department of Acute Heart Failure. Intravenous vasodilator use within 6 hours of hospital arrival and subsequent SBP changes were analysed. Outcomes were gauged by 1-year mortality and diuretic response (DR), defined as total urine output 6 hours posthospital arrival per 40 mg furosemide-equivalent diuretic use. Results Over half of the patients (56.0%) were treated with intravenous vasodilators within the first 6 hours. In this vasodilator-treated cohort, 554 (59.3%) experienced SBP reduction 25%. In patients experiencing Conclusions Intravenous vasodilator therapy was associated with greater DR and lower mortality, provided SBP reduction was less than 25%. Our results highlight the importance in early administration of intravenous vasodilators without causing excess SBP reduction in AHF management

    TLR7 single-nucleotide polymorphisms in the 3' untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study

    Get PDF
    IntroductionThe Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3\u27 untranslated region (3\u27 UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population.MethodsA case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls.ResultsIn addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3\u27 UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3\u27 UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3\u27 UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE.ConclusionsThe TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of the 3\u27 UTR SNP rs3853839 in Japanese women. Our findings support a role of TLR7 in predisposition for SLE in Asian populations

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore