237 research outputs found

    An Open Source Testing Tool for Evaluating Handwriting Input Methods

    Full text link
    This paper presents an open source tool for testing the recognition accuracy of Chinese handwriting input methods. The tool consists of two modules, namely the PC and Android mobile client. The PC client reads handwritten samples in the computer, and transfers them individually to the Android client in accordance with the socket communication protocol. After the Android client receives the data, it simulates the handwriting on screen of client device, and triggers the corresponding handwriting recognition method. The recognition accuracy is recorded by the Android client. We present the design principles and describe the implementation of the test platform. We construct several test datasets for evaluating different handwriting recognition systems, and conduct an objective and comprehensive test using six Chinese handwriting input methods with five datasets. The test results for the recognition accuracy are then compared and analyzed.Comment: 5 pages, 3 figures, 11 tables. Accepted to appear at ICDAR 201

    A General Implicit Framework for Fast NeRF Composition and Rendering

    Full text link
    A variety of Neural Radiance Fields (NeRF) methods have recently achieved remarkable success in high render speed. However, current accelerating methods are specialized and incompatible with various implicit methods, preventing real-time composition over various types of NeRF works. Because NeRF relies on sampling along rays, it is possible to provide general guidance for acceleration. To that end, we propose a general implicit pipeline for composing NeRF objects quickly. Our method enables the casting of dynamic shadows within or between objects using analytical light sources while allowing multiple NeRF objects to be seamlessly placed and rendered together with any arbitrary rigid transformations. Mainly, our work introduces a new surface representation known as Neural Depth Fields (NeDF) that quickly determines the spatial relationship between objects by allowing direct intersection computation between rays and implicit surfaces. It leverages an intersection neural network to query NeRF for acceleration instead of depending on an explicit spatial structure.Our proposed method is the first to enable both the progressive and interactive composition of NeRF objects. Additionally, it also serves as a previewing plugin for a range of existing NeRF works.Comment: 7 pages for main conten

    Effects of Tert-Butylhydroquinone on Intestinal Inflammatory Response and Apoptosis following Traumatic Brain Injury in Mice

    Get PDF
    Traumatic brain injury (TBI) can induce intestinal inflammatory response and mucosal injury. Antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown in our previous studies to prevent oxidative stress and inflammatory response in gut after TBI. The objective of this study was to test whether tert-butylhydroquinone (tBHQ), an Nrf2 inducer, can protect against TBI-induced intestinal inflammatory response and mucosal injury in mice. Adult male ICR mice were randomly divided into three groups: (1) sham + vehicle group, (2) TBI + vehicle group, and (3) TBI + tBHQ group (n = 12 per group). Closed head injury was adopted using Hall's weight-dropping method. Intestinal mucosa apoptosis and inflammatory-related factors, such as nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1), were investigated at 24 h after TBI. As a result, we found that oral treatment with 1% tBHQ prior to TBI for one week markedly decreased NF-κB activation, inflammatory cytokines production, and ICAM-1 expression in the gut. Administration of tBHQ also significantly attenuated TBI-induced intestinal mucosal apoptosis. The results of the present study suggest that tBHQ administration could suppress the intestinal inflammation and reduce the mucosal damage following TBI

    Chiral magnetoresistance in Pt/Co/Pt zigzag wires

    Full text link
    The Rashba effect leads to a chiral precession of the spins of moving electrons while the Dzyaloshinskii-Moriya interaction (DMI) generates preference towards a chiral profile of local spins. We predict that the exchange interaction between these two spin systems results in a 'chiral' magnetoresistance depending on the chirality of the local spin texture. We observe this magnetoresistance by measuring the domain wall (DW) resistance in a uniquely designed Pt/Co/Pt zigzag wire, and by changing the chirality of the DW with applying an in-plane magnetic field. A chirality-dependent DW resistance is found, and a quantitative analysis shows a good agreement with a theory based on the Rashba model. Moreover, the DW resistance measurement allows us to independently determine the strength of the Rashba effect and the DMI simultaneously, and the result implies a possible correlation between the Rashba effect, the DMI, and the symmetric Heisenberg exchange

    A 7000-year record of environmental change: Evolution of Holocene environment and human activities in the Hangjiahu Plain, the lower Yangtze, China

    Get PDF
    The Hangjiahu Plain in the lower Yangtze is one of the core areas that sustained the flourishment of the Liangzhu Civilization. This study reconstructed Holocene environmental change on the Hangjiahu Plain based on a sediment core collected from the Tangqi ZK-3 location situated on the low-lying Hangzhou-Taihu region of the Yangtze Delta. We applied OSL dating, grain size analysis, pollen analysis, and magnetic susceptibility to reconstruct Holocene environmental change and compared our data with other published results. Our results showed that (i) before ~7.0 ka B.P., the ZK-3 core recorded a strong hydrodynamic force, resulting in the widespread deposition of light grayish silt clay or clayey silt in the region. The climate was warm and humid, and the vegetation was mixed evergreen deciduous coniferous forest. (ii) Between 7.0 and 6.0 ka B.P., the hydrodynamic condition in ZK-3 core became weaker, and the climate remained warm and humid. Although most of the Hangjiahu Plain were still covered by the light grayish silt clay or clayey silt, some higher grounds began to emerge as sea-level rise slowed, which coincided with the development of the Majiabang culture. (iii) Between 6.0 and 4.5 ka B.P., the deposition of yellowish silty clay indicates a shallow-water hydrological environment at ZK-3, as the regional water level was dropping while more land was emerging, which provided a favorable physical environment for the prosperity of the Songze and Liangzhu cultures. The period experienced a drier and cooler climate, with evidence of deforestation. (iv) Between 4.5 and 3.0 ka B.P., the sediments in the ZK-3 core were dominated by light grayish clay, indicative of a return to a deep-water environment with a prolonged waterlogging condition. The climate remained dry and cool with further deforestation. However, the widely distributed yellowish silt clay suggests frequent floods in the region, resulting in a sharp reduction of settlement sites and the eventual decline of the Liangzhu Civilization

    Robust Optical Data Encryption by Projection-Photoaligned Polymer-Stabilized-Liquid-Crystals

    Full text link
    The emerging Internet of Things (IoTs) invokes increasing security demands that require robust encryption or anti-counterfeiting technologies. Albeit being acknowledged as efficacious solutions in processing elaborate graphical information via multiple degrees of freedom, optical data encryption and anti-counterfeiting techniques are typically inept in delivering satisfactory performance without compromising the desired ease-of-processibility or compatibility, thus leading to the exploration of novel materials and devices that are competent. Here, a robust optical data encryption technique is demonstrated utilizing polymer-stabilized-liquid-crystals (PSLCs) combined with projection photoalignment and photopatterning methods. The PSLCs possess implicit optical patterns encoded via photoalignment, as well as explicit geometries produced via photopatterning. Furthermore, the PSLCs demonstrate improved robustness against harsh chemical environments and thermal stability, and can be directly deployed onto various rigid and flexible substrates. Based on this, it is demonstrated that single PSLC is apt to carry intricate information, or serve as exclusive watermark with both implicit features and explicit geometries. Moreover, a novel, generalized design strategy is developed, for the first time, to encode intricate and exclusive information with enhanced security by spatially programming the photoalignment patterns of a pair of cascade PSLCs, which further illustrates the promising capabilies of PSLCs in optical data encryption and anti-counterfeiting

    Brucella Dysregulates Monocytes and Inhibits Macrophage Polarization through LC3-Dependent Autophagy

    Get PDF
    Brucellosis is caused by infection with Brucella species and exhibits diverse clinical manifestations in infected humans. Monocytes and macrophages are not only the first line of defense against Brucella infection but also a main reservoir for Brucella. In the present study, we examined the effects of Brucella infection on human peripheral monocytes and monocyte-derived polarized macrophages. We showed that Brucella infection led to an increase in the proportion of CD14++CD16− monocytes and the expression of the autophagy-related protein LC3B, and the effects of Brucella-induced monocytes are inhibited after 6 weeks of antibiotic treatment. Additionally, the production of IL-1β, IL-6, IL-10, and TNF-α from monocytes in patients with brucellosis was suppressed through the LC3-dependent autophagy pathway during Brucella infection. Moreover, Brucella infection inhibited macrophage polarization. Consistently, the addition of 3-MA, an inhibitor of LC3-related autophagy, partially restored macrophage polarization. Intriguingly, we also found that the upregulation of LC3B expression by rapamycin and heat-killed Brucella in vitro inhibits M2 macrophage polarization, which can be reversed partially by 3-MA. Taken together, these findings reveal that Brucella dysregulates monocyte and macrophage polarization through LC3-dependent autophagy. Thus, targeting this pathway may lead to the development of new therapeutics against Brucellosis

    Structural patterns at all scales in a nonmetallic chiral Au_133(SR)_52 nanoparticle

    Full text link
    Structural ordering is widely present in molecules and materials. However, the organization of molecules on the curved surface of nanoparticles is still the least understood owing to the major limitations of the current surface characterization tools. By the merits of x-ray crystallography, we reveal the structural ordering at all scales in a super robust 133–gold atom nanoparticle protected by 52 thiolate ligands, which is manifested in self-assembled hierarchical patterns starting from the metal core to the interfacial –S–Au–S– ladder-like helical “stripes” and further to the “swirls” of carbon tails. These complex surface patterns have not been observed in the smaller nanoparticles. We further demonstrate that the Au133(SR)52 nanoparticle exhibits nonmetallic features in optical and electron dynamics measurements. Our work uncovers the elegant self-organization strategies in assembling a highly robust nanoparticle and provides a conceptual advance in scientific understanding of pattern structures
    corecore