552 research outputs found

    Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network

    Full text link
    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67\% accuracy and 96.02\% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.Comment: 9 pages, 4 figures, Accepted by Scientific Report

    Optimizing microbial- and enzyme-induced carbonate precipitation treatment regimes to improve the performance of recycled aggregate concrete

    Get PDF
    Recycled aggregate concrete (RAC) typically suffers from inferior properties due to old mortar on the surface of recycled aggregate (RA), and the practical application of two proposed treatment methods, microbial-induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP), has encountered challenges in determining optimal culture medium and precipitation regimes. This study initially aimed to address these challenges by establishing the feasibility of using chloride-free cultivation medium to avoid introducing chloride ions that could damage the steel reinforcement. The optimal Ca concentration in the precipitation culture medium was determined as 0.3 mol/L for MICP and 0.5 mol/L for EICP. Furthermore, the optimal precipitation regimes for MICP and EICP treatments were identified as I-S (5 cycles) and M-S (3 cycles), respectively. The quantitative evaluation of the above factors enabled the direct practical application of these optimal treatment regimes. The performance of RAC was significantly improved after both MICP and EICP treatments compared to untreated RAC, with EICP treatment demonstrating superior performance. The precipitated CaCO3 formed during MICP treatment consisted mainly of spherical vaterite crystals, while the precipitation formed during EICP treatment comprised vaterite, calcite, and aragonite. These differences in phase and mechanism between MICP and EICP treatments could explain the variations in the performance of RAC.</p

    Electrical Behavior Association Mining for Household ShortTerm Energy Consumption Forecasting

    Full text link
    Accurate household short-term energy consumption forecasting (STECF) is crucial for home energy management, but it is technically challenging, due to highly random behaviors of individual residential users. To improve the accuracy of STECF on a day-ahead scale, this paper proposes an novel STECF methodology that leverages association mining in electrical behaviors. First, a probabilistic association quantifying and discovering method is proposed to model the pairwise behaviors association and generate associated clusters. Then, a convolutional neural network-gated recurrent unit (CNN-GRU) based forecasting is provided to explore the temporal correlation and enhance accuracy. The testing results demonstrate that this methodology yields a significant enhancement in the STECF.Comment: 3 figures and 4 tables; This manuscript is submitted for possible publicatio

    Analysis of Urban Impervious Surface in Coastal Cities: A Case Study in Lianyungang, China

    Get PDF
    Impervious surface is an important indicator of the level of urbanization. It is of great significance to study the impervious surface to promote the sustainable development of the city. In the process of urban development, the increase of impervious surface cities is bound to be accompanied by a reduction of one or more types of land use in the city. This paper, taking Lianyungang as an example, introduces the methods of extracting urban impervious surface based on VIS model, NDVI (normalized vegetation index), MNDWI (modified normalized water body index), and unsupervised classification, analyzes the changes of impervious surface in Lianyungang from 1987 to 2014, and on this basis, analyzes the trend and driving forces of land use types in Lianyungang city in depth. The results show that the impervious surface of Lianyungang increased by a total of 29.70% between 1987 and 2014. While the impervious surface continues to increase, the area of cultivated land and coastal areas (including salt works and tidal flats) has been greatly reduced, and the types of land use have undergone significant changes

    Magnetopause Reconnection as Influenced by the Dipole Tilt Under Southward IMF Conditions: Hybrid Simulation and MMS Observation

    Full text link
    Using a three‐dimensional (3‐D) global‐scale hybrid code, the Magnetospheric Multiscale (MMS) reconnection event around 02:13 UT on 18 November 2015, highlighted in the Geospace Environment Modeling (GEM) Dayside Kinetic Challenge, is simulated, in which the interplanetary magnetic field (IMF) points southward and the geomagnetic field has a −27° dipole tilt angle. Strong southward plasma jets are found near the magnetopause as a result of the dayside reconnection. Our results indicate that the subsolar magnetopause reconnection X line shifts from the subsolar point toward the Northern Hemisphere due to the effect of the tilted geomagnetic dipole angle, consistent with the MMS observation. Subsequently, the reconnection X lines or sites and reconnection flux ropes above the equator propagate northward along the magnetopause. The formation and global distribution of the X lines and the structure of the magnetopause reconnection are investigated in detail with the simulation. Mirror mode waves are also found in the middle of the magnetosheath downstream of the quasi‐perpendicular shock where the plasma properties are consistent with the mirror instability condition. As a special outcome of the GEM challenge event, the spatial and temporal variations in reconnection, the electromagnetic power spectra, and the associated D‐shaped ion velocity distributions in the simulated reconnection event are compared with the MMS observation.Key PointsSubsolar magnetopause X lines shift toward the Northern Hemisphere due to the effect of the negative tilted geomagnetic dipole angleThe hybrid simulation magnetic fields and plasma date match MMS3 observations well during the magnetopause crossingMirror mode waves appear in the middle of the magnetosheath downstream of the quasi‐perpendicular shockPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162687/2/jgra55909_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162687/1/jgra55909.pd

    Investigating the influence of an adjustable zoned air mattress on sleep: a multinight polysomnography study

    Get PDF
    IntroductionA comfortable mattress should improve sleep quality. In this study, we sought to investigate the specific sleep parameters that could be affected by a mattress and explore any potential differences between the effects felt by each sex.MethodsA total of 20 healthy young adults (10 females and 20 males; 22.10 ± 1.25 years) participated in the experiments. A smart adjustable zoned air mattress was designed to maintain comfortable support, and an ordinary mattress was used for comparison. The participants individually spent four nights on these two mattresses in four orders for polysomnography (PSG) scoring. Sleep architecture, electroencephalogram (EEG) spectrum, and heart rate variability (HRV), which reflect the central and autonomic nervous activities, were used to compare the difference between the two mattresses.ResultsAn individual difference exited in sleep performance. The modes of influence of the mattresses were different between the sexes. The adjustable air mattress and the increase in experimental nights improved female participants' sleep efficiency, while male participants exhibited a smaller response to different mattresses. With an increasing number of experiment nights, both sexes showed increased REM and decreased N2 proportions; the N3 sleep proportion decreased in the male participants, and the heart rate decreased in both sexes. The performance of the EEG spectrum supports the above results. In addition, the adjustable air mattress weakened automatic nerve activity during N3 sleep in most participants. The female participants appeared to be more sensitive to mattresses. Experiment night was associated with psychological factors. There were differences in the results for this influence between the sexes.ConclusionThis study may shed some light on the differences between the ideal sleep environment of each sex

    Hydrogels enable negative pressure in water for efficient heat utilization and transfer

    Full text link
    Metastable water in negative pressure can provide giant passive driving pressure up to several megapascals for efficient evaporation-driven flow, however, the practical applications with negative pressure are rare due to the challenges of generating and maintaining large negative pressure. In this work, we report a novel structure with thin hydrogel films as evaporation surfaces and robust porous substrates as the supports, and obtain a high negative pressure of -1.61 MPa through water evaporation. Molecular dynamics simulations elucidate the essential role of strong interaction between water molecules and polymer chains in generating the negative pressure. With such a large negative pressure, we demonstrate a streaming potential generator that spontaneously converts environmental energy into electricity and outputs a voltage of 1.06 V. Moreover, we propose a "negative pressure heat pipe" for the first time, which achieves a high heat transfer density of 11.2 kW cm-2 with a flow length of 1 m, showing the potential of negative pressure in efficient heat utilization and transfer.Comment: 43 pages, 18 figure

    Fabrication of high gas-tightness SiCN ceramic via PIP process for increasing sensing distance of pressure sensor

    Get PDF
    Abstract(#br)High-gas-tightness wireless pressure sensors were fabricated by using a silicon carbonitride (SiCN) ceramic material derived from liquid polyvinylsilazane (PVSZ) precursor via precursor infiltration and pyrolysis (PIP) process. In order to increase the density of ceramic disks effectively, two types of infiltration liquids were chosen; PVSZ/Ethanol (2:1) with high viscosity was designed for the first cycle of PIP process, while PVSZ/Ethanol (1:1) with low viscosity was designed for the last two cycles of PIP process (The ratio in the parentheses represents the content of PVSZ and ethanol, respectively). The results confirmed that the density of ceramic disk after three PIP cycles can be increased to 2.155 g/cm 3 . Gas tightness measurement of ceramic disks indicated that the gas tightness was improved obviously after PIP cycles, and ceramic disks after the 2 nd and 3 rd PIP cycles could keep gas-tight condition without loss of pressure after 8 days. In addition, because high density was detected in the ceramic disks after PIP cycles, the wireless pressure sensors with large sensing distance have been fabricated
    corecore