103 research outputs found

    Properties of Hydrogel-Wood Composite as a New Thermochromic Glazing Material

    Get PDF
    Recently, thermal-response hydrogel smart window is widely studied because of its high luminous transmittance (τlum) and high solar modulation ability (Δτsol). However, its liquid state is undesirable for window applications. Wood has strong mechanical strength and low thermal conductivity. Due to the unique features of the thermal-response hydrogel and wood, a thermochromic hydrogel wood composite (HWC) that can smartly regulate solar irradiation is proposed by impregnating a thermal-response hydrogel into delignified wood. The novel HWC demonstrates advanced optical properties (i.e. τlum = 83% and 40% at the cold transparent and hot opaque states & Δτsol = 38%) and low transition temperature (i.e. Tc = 23 oC). Moreover, the HWC is highly flexible and easily fitted into existing windows frames. Overall, the HWC with its impressive features shows great promise for energy-efficient material for smart windows in buildings.publishedVersio

    Volume-regulated Cl- current: contributions of distinct Cl- channel and localized Ca2+ signals.

    Get PDF
    The swelling-activated chloride current (ICl,swell) is induced when a cell swells and plays a central role in maintaining cell volume in response to osmotic stress. The major contributor of ICl,swell is the volume regulated anion channel (VRAC). LRRC8A (SWELL1) was recently identified as an essential component of VRAC but the mechanisms of VRAC activation are still largely unknown; moreover, other Cl- channels, such as anoctamin 1 (ANO1) were also suggested to contribute to ICl,swell. In this present study, we investigated the roles of LRRC8A and ANO1 in activation of ICl,swell; we also explored the role of intracellular Ca2+ in ICl,swell activation. We used CRISPR/Cas9 gene editing approach, electrophysiology, live fluorescent imaging, selective pharmacology and other approaches to show that both LRRC8A and ANO1 can be activated by cell swelling in HEK293 cells. Yet, both channels contribute biophysically and pharmacologically distinct components to ICl,swell, with LRRC8A being the major component. Cell swelling induced oscillatory Ca2+ transients and these Ca2+ signals were required to activate both, the LRRC8A- and ANO1-dependent components of ICl,swell. Both ICl,swell components required localized rather than global Ca2+ for activation. Interestingly, while intracellular Ca2+ was necessary and sufficient to activate ANO1, it was necessary but not sufficient to activate LRRC8A-mediated currents. Finally, Ca2+ transients linked to the ICl,swell activation were mediated by the GPCR-independent PLC isoforms

    Anti-aging Effect of Inactivated Bacillus sp. DU-106 in Caenorhabditis elegans

    Get PDF
    The aim of this study was to investigate the antioxidant and anti-aging effects and underlying mechanisms of inactivated Bacillus sp. DU-106 in Caenorhabditis elegans. The antioxidant activity of inactivated Bacillus sp. DU-106 was evaluated by in vitro free radical scavenging assay. The effects of inactivated Bacillus sp. DU-106 at various concentrations on the lifespan, stress response and antioxidant capacity of C. elegans were observed. The results illustrated that inactivated Bacillus sp. DU-106 possessed strong free radical scavenging capacity in vitro, meanwhile, inactivated Bacillus sp. DU-106 effectively extended the lifespan of C. elegans and improved its movement and stress resistance. Different concentrations of inactivated Bacillus sp. DU-106 increased the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione in a dose-dependent manner. Fluorescence microscopy showed that treatment with inactivated Bacillus sp. DU-106 significantly reduced lipofuscin levels in C. elegans. In conclusion, inactivated Bacillus sp. DU-106 can exert an anti-aging effect perhaps by reducing lipofuscin accumulation and increasing the levels of antioxidant enzymes in C. elegans. This study provides a powerful basis for the development of Bacillus for application in nutraceuticals

    Tumor budding as a predictor for prognosis and therapeutic response in gastric cancer: A mini review

    Get PDF
    In recent years, the role of tumor budding in gastric cancer has received increased attention across a number of disciplines. Several studies have found associations between tumor budding and the prediction of lymph node metastasis in early gastric cancer, prognosis of advanced gastric cancer, predictors of therapeutic response to immune checkpoint inhibitors, such as microsatellite instability (MSI), and therapeutic targets of molecular targeted therapy, such as human epidermal growth factor receptor 2 (HER-2). Therefore, tumor budding is a major element in the formulation of risk stratification and precision medicine strategies for patients with gastric cancer

    Mechanism exploration and prognosis study of Astragali Radix-Spreading hedyotis herb for the treatment of lung adenocarcinoma based on bioinformatics approaches and molecular dynamics simulation

    Get PDF
    Background: Herb pair of Astragali Radix (AR) and Spreading Hedyotis Herb (SH) has been frequently prescribed in clinical for the treatment of lung cancer owing to its favorable efficacy. Yet, the mechanism under the therapeutic effects remained unveiled, which has limited its clinical applications, and new drug development for lung cancer.Methods: The bioactive ingredients of AR and SH were retrieved from the Traditional Chinese Medicine System Pharmacology Database, with the targets of obtained components predicted by Swiss Target Prediction. Genes related to lung adenocarcinoma (LUAD) were acquired from GeneCards, OMIM and CTD databases, with the hub genes of LUAD screened by CTD database. The intersected targets of LUAD and AR-SH were obtained by Venn, with David Database employed to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Survival analysis of the hub genes of LUAD was carried out using TCGA-LUAD dataset. Molecular docking of core proteins and active ingredients was performed by Auto-Dock Vina software, followed by molecular dynamics simulations of protein-ligand complexes with well-docked conformations.Results: 29 active ingredients were screened out with 422 corresponding targets predicted. It is revealed that AR-SH can act on various targets such as EGFR, MAPK1, and KARS by ursolic acid (UA), Astragaloside IV(ASIV), and Isomucronulatol 7,2′-di-O-glucoside (IDOG) to alleviate the symptoms of LUAD. Biological processes involved are protein phosphorylation, negative regulation of apoptotic process, and pathways involved are endocrine resistance, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt, and HIF-1 pathway. Molecular docking analysis indicated that the binding energy of most of the screened active ingredients to proteins encoded by core genes was less than −5.6 kcal/mol, with some active ingredients showing even lower binding energy to EGFR than Gefitinib. Three ligand-receptor complexes including EGFR-UA, MAPK1-ASIV, and KRAS-IDOG were found to bind relatively stable by molecular dynamics simulation, which was consistent with the results of molecule docking.Conclusion: We suggested that the herb pair of AR-SH can act on targets like EGFR, MAPK1 and KRAS by UA, ASIV and IDOG, to play a vital role in the treatment and the enhancement of prognosis of LUAD

    Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19

    Get PDF
    Background: Several studies have described the clinical characteristics of patients with novel coronavirus (SARS-CoV-2) infected pneumonia (COVID-19), indicating severe patients tended to have higher neutrophil to lymphocyte ratio (NLR). Whether baseline NLR could be an independent predictor of in-hospital death in Chinese COVID-19 patients remains to be investigated. Methods: A cohort of patients with COVID-19 admitted to the Zhongnan Hospital of Wuhan University from January 1 to February 29 was retrospectively analyzed. The baseline data of laboratory examinations, including NLR, were collected. Univariate and multivariate logistic regression models were developed to assess the independent relationship between the baseline NLR and in-hospital all-cause death. A sensitivity analysis was performed by converting NLR from a continuous variable to a categorical variable according to tertile. Interaction and stratified analyses were conducted as well. Results: 245 COVID-19 patients were included in the final analyses, and the in-hospital mortality was 13.47%. Multivariate analysis demonstrated that there was 8% higher risk of in-hospital mortality for each unit increase in NLR (Odds ratio [OR] = 1.08; 95% confidence interval [95% CI], 1.01 to 1.14; P = 0.0147). Compared with patients in the lowest tertile, the NLR of patients in the highest tertile had a 15.04-fold higher risk of death (OR = 16.04; 95% CI, 1.14 to 224.95; P = 0.0395) after adjustment for potential confounders. Notably, the fully adjusted OR for mortality was 1.10 in males for each unit increase of NLR (OR = 1.10; 95% CI, 1.02 to 1.19; P = 0.016). Conclusions: NLR is an independent risk factor of the in-hospital mortality for COVID-19 patients especially for male. Assessment of NLR may help identify high risk individuals with COVID-19

    Leader peptide removal in lasso peptide biosynthesis based on penultimate isoleucine residue

    Get PDF
    Lasso peptides are ribosomally synthesized peptides that undergo post-translational modifications including leader peptide removal by B (or the segregated B1 and B2) proteins and core peptide macrolactamization by C proteins to form a unique lariat topology. A conserved threonine residue at the penultimate position of leader peptide is hitherto found in lasso peptide precursors and shown to be a critical recognition element for effective enzymatic processing. We identified a lasso peptide biosynthetic gene cluster (bsf) from Bradymonas sediminis FA350, a Gram-negative and facultatively prey-dependent bacterium that belongs to a novel bacterial order Bradymonadales in the class Deltaproteobacteria. The kinase BsfK specifically catalyzes the phosphorylation of the precursor peptide BsfA on the Ser3 residue. BsfB1 performs dual functions to accelerate the post-translational phosphorylation and assist BsfB2 in leader peptide removal. Most importantly, the penultimate residue of leader peptide is an isoleucine rather than the conserved threonine and this isoleucine has a marked impact on the phosphorylation of Ser3 as well as leader peptide removal, implying that BsfB1 and BsfB2 exhibit a new substrate selectivity for leader peptide binding and excision. This is the first experimentally validated penultimate isoleucine residue in a lasso peptide precursor to our knowledge. In silico analysis reveals that the leader peptide Ile/Val(-2) residue is rare but not uncommon in phosphorylated lasso peptides, as this residue is also discovered in Acidobacteriaceae and Sphingomonadales in addition to Bradymonadales

    A Novel Xenograft Model in Zebrafish for High-Resolution Investigating Dynamics of Neovascularization in Tumors

    Get PDF
    Tumor neovascularization is a highly complex process including multiple steps. Understanding this process, especially the initial stage, has been limited by the difficulties of real-time visualizing the neovascularization embedded in tumor tissues in living animal models. In the present study, we have established a xenograft model in zebrafish by implanting mammalian tumor cells into the perivitelline space of 48 hours old Tg(Flk1:EGFP) transgenic zebrafish embryos. With this model, we dynamically visualized the process of tumor neovascularization, with unprecedented high-resolution, including new sprouts from the host vessels and the origination from VEGFR2+ individual endothelial cells. Moreover, we quantified their contributions during the formation of vascular network in tumor. Real-time observations revealed that angiogenic sprouts in tumors preferred to connect each other to form endothelial loops, and more and more endothelial loops accumulated into the irregular and chaotic vascular network. The over-expression of VEGF165 in tumor cells significantly affected the vascularization in xenografts, not only the number and size of neo-vessels but the abnormalities of tumor vascular architecture. The specific inhibitor of VEGFR2, SU5416, significantly inhibited the vascularization and the growth of melanoma xenografts, but had little affects to normal vessels in zebrafish. Thus, this zebrafish/tumor xenograft model not only provides a unique window to investigate the earliest events of tumoral neoangiogenesis, but is sensitive to be used as an experimental platform to rapidly and visually evaluate functions of angiogenic-related genes. Finally, it also offers an efficient and cost-effective means for the rapid evaluation of anti-angiogenic chemicals
    • …
    corecore