210 research outputs found

    A Self-Organizing Group Within a Hierarchical Organization

    Get PDF
    This study was conducted to discover and describe the characteristics of a community of practice (CoP) and the health care system within which it formed. The study explored the relationship between a CoP of primary care physicians and a health care system that was both a hierarchical organization and a complex adaptive entity. It further examined the impact that relationship may have had on the organization’s sustainability within its environment. A qualitative approach was used for the collection and analysis of data. Semi-structured interviews were conducted with four members of the CoP and three members of their administrative hierarchy. There were two aspects to the data analysis: (a) development of themes emerging from interviews aligned with each of the research questions and (b) application of fractal narrative analysis to examine the degree to which each of the interviewees’ responses contained content that was self-similar such that each contributed to the picture of the whole organization. Findings illustrated the application of numerous complexity characteristics. These included (a) attractors that influenced the formation and continued cohesiveness of the CoP and fostered a dynamic tension in the relationship between the CoP and its administrative hierarchy, (b) sensitive dependence found in retrospect when the impact of the attitude and behavior of administrators was looked at in relation to the evolution and political influence of the CoP, (c) phase transitions and fitness peaks that characterized the journey of the CoP, and (d) fractality which revealed a strong alignment of values and beliefs between CoP members and administrators, creating a cohesive picture of the whole organization, but divergence in the two groups’ approaches to realizing them

    Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation

    Get PDF
    pre-printForecasts of the amount and geographic distribution of snow are highly sensitive to a model's parameterization of hydrometeor fallspeed. Riming is generally thought to lead to particles with a higher mass and terminal velocity. Yet models commonly assume that heavily rimed particles such as graupel have a fixed density and that their settling speed is unaffected by turbulence in storms. Here we show automated measurements of photographed hydrometeor shape and fallspeed using a new instrument placed in Utah's Wasatch Mountain Range. The data show that graupel in low-turbulence conditions has a size-dependent fallspeed distribution with a mode near 1 m s−1, a result that is generally consistent with prior observations. However, the distributions are broadened by turbulence and there is a correspondence between particle density and air temperature. In high turbulence and at low temperatures, any sensitivity of fallspeed to particle size disappears

    Thermodynamic and Aerosol Controls in Southeast Pacific Stratocumulus

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-0165.1.A near-large-eddy simulation approach with size-revolving (bin) microphysics is employed to evaluate the relative sensitivity of southeast Pacific marine boundary layer cloud properties to thermodynamic and aerosol parameters. Simulations are based on a heavily drizzling cloud system observed by the NOAA ship Ronald H. Brown during the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-Rex) field campaign. A suite of numerical experiments examines the sensitivity of drizzle to variations in boundary layer depth and cloud condensation nuclei (CCN) concentration in a manner consistent with the variability of those parameters observed during VOCALS-Rex. All four simulations produce cellular structures and turbulence characteristics of a circulation driven predominantly in a bottom-up fashion. The cloud and subcloud layers are coupled by strong convective updrafts that provide moisture to the cloud layer. Distributions of reflectivity calculated from model droplet spectra agree well with reflectivity distributions from the 5-cm-wavelength scanning radar aboard the ship, and the statistical behavior of cells over the course of the simulation is similar to that documented in previous studies of southeast Pacific stratocumulus. The simulations suggest that increased aerosol concentration delays the onset of drizzle, whereas changes in the boundary layer height are more important in modulating drizzle intensity

    Comparisons of Modeled and Observed Reflectivities and Fall Speeds for Snowfall of Varied Riming Degree During Winter Storms on Long Island, New York

    Get PDF
    Derived radar reflectivity and fall speed for four Weather Research and Forecasting model bulk microphysical parameterizations (BMPs) run at 1.33 km grid spacing are compared with ground-based, vertically-pointing Ku-band radar, scanning S- band radar, and in situ measurements at Stony Brook, NY. Simulations were partitioned into periods of observed riming degree as determined manually using a stereo microscope and camera during nine winter storms. Simulations were examined to determine whether the selected BMPs captured the effects of varying riming intensities, provided a reasonable match to the vertical structure of radar reflectivity or fall speed, and whether they produced reasonable surface fall speed distributions. Schemes assuming non spherical mass-diameter relationships yielded reflectivity distributions closer to observed values. All four schemes examined in this study provided a better match to the observed, vertical structure of reflectivity during moderate riming than light riming periods. The comparison of observed and simulated snow fall speeds had mixed results. One BMP produced episodes of excessive cloud water at times, resulting in fall speeds that were too large. However, most schemes had frequent periods of little or no cloud water during moderate riming periods and thus underpredicted the snow fall speeds at lower levels. Short, 1-4 hour periods with relatively steady snow conditions were used to compare BMP and observed size and fall speed distributions. These limited data suggest the examined BMPs underpredict fall speeds of cold-type snow habits and underrepresent aggregates larger than 4 mm diameter

    The Time Scales of Variability of Marine Low Clouds

    Get PDF
    Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to the AMS Permissions Officer at [email protected]. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).Multidecade global regressions of inversion strength, vertical velocity, and sea surface temperature (SST) on low cloud amount, from subdaily to multiyear time scales, refute the dominance of seasonal inversion strength on marine low cloud variability. Multiday low cloud variance averaged over the eastern Pacific and Atlantic stratocumulus regions [5 × 10−2 (cloud amount)2] is twice the subdaily variance and 5 times larger than the multimonth variance. The broad multiday band contains most (60%) of the variance, despite strong seasonal (annual) and diurnal spectral peaks. Multiday low cloud amount over the eastern tropical and midlatitude oceans is positively correlated to inversion strength, with a slope of 2%–5% K−1. Anecdotes show multiday low cloud and inversion strength anomalies propagate equatorward from midlatitudes. Previously shown correlations of low clouds to strong inversions and cool SST on monthly and longer time scales in the stratocumulus regions imply positive cloud-radiative feedbacks, with e-folding time scales of 300 days for SST and 14 days for atmospheric boundary layer temperature. On multimonth time scales, removing the effect of SST on low clouds reduces the low cloud amount explained by inversion strength by a factor of 3, but SST has a small effect at other time scales. Contrary to their positive correlation in the stratocumulus cloud decks, low clouds are anticorrelated to inversion strength over most of the tropics on daily and subdaily time scales

    Detection and characterization of heavy drizzle cells within subtropical marine stratocumulus using AMSR-E 89-GHz passive microwave measurements

    Get PDF
    This empirical study demonstrates the feasibility of using 89-GHz Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) passive microwave brightness temperature data to detect heavily drizzling cells within subtropical marine stratocumulus. For the purpose of this paper, we define heavily drizzling cells as areas ≄ 6 km × 4 km with C-band <i>Z</i> > 0 dBZ; equivalent to > 0.084 mm h<sup>−1</sup>. A binary heavy drizzle product is described that can be used to determine areal and feature statistics of drizzle cells within the major marine stratocumulus regions. Current satellite liquid water path (LWP) and cloud radar products capable of detecting drizzle are either lacking in resolution (AMSR-E LWP), diurnal coverage (MODIS LWP), or spatial coverage (CloudSat). The AMSR-E 89-GHz data set at 6 km × 4 km spatial resolution is sufficient for resolving individual heavily drizzling cells. Radiant emission at 89 GHz by liquid-water cloud and precipitation particles from drizzling cells in marine stratocumulus regions yields local maxima in brightness temperature against an otherwise cloud-free background brightness temperature. The background brightness temperature is primarily constrained by column-integrated water vapor for moderate sea surface temperatures. Clouds containing ice are screened out. Once heavily drizzling pixels are identified, connected pixels are grouped into discrete drizzle cell features. The identified drizzle cells are used in turn to determine several spatial statistics for each satellite scene, including drizzle cell number and size distribution. The identification of heavily drizzling cells within marine stratocumulus regions with satellite data facilitates analysis of seasonal and regional drizzle cell occurrence and the interrelation between drizzle and changes in cloud fraction

    Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    Get PDF
    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is ~0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were ~0.25 meters per second too slow, while the SBU-YLIN was 0.25 to 0.5 meters per second too fast. Overall, the BMPs simulate a size distribution close to the observed for D 6 mm in the dendrites, side planes, and mixed habit periods, the BMPs are likely not simulating enough aggregation to create a larger size distribution, although the MORR (double moment) scheme seemed to perform best. These SBNY results will be compared with some results from GCPEx for a warm frontal snow band observed at 18 February 2012
    • 

    corecore