194 research outputs found

    Search for Outer Massive Bodies around Transiting Planetary Systems: Candidates of Faint Stellar Companions around HAT-P-7

    Full text link
    We present results of direct imaging observations for HAT-P-7 taken with the Subaru HiCIAO and the Calar Alto AstraLux. Since the close-in transiting planet HAT-P-7b was reported to have a highly tilted orbit, massive bodies such as giant planets, brown dwarfs, or a binary star are expected to exist in the outer region of this system. We show that there are indeed two candidates for distant faint stellar companions around HAT-P-7. We discuss possible roles played by such companions on the orbital evolution of HAT-P-7b. We conclude that as there is a third body in the system as reported by Winn et al. (2009, ApJL, 763, L99), the Kozai migration is less likely while planet-planet scattering is possible.Comment: 8 pages, 3 figures, 2 tables, PASJ in pres

    Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    Full text link
    By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the HH band with a spatial resolution of approximately 0.07\arcsec, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab and part of a circumstellar structure that is noticeable around GG Tau Aa extending to a distance of approximately 28 AU from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to <13 AU. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semi-major axis of the binary's orbit is likely to be 62 AU. A comparison of the present observations with previous ALMA and near-infrared (NIR) H2_2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation ≲\lesssim 100 AU) young binary systems.Comment: Accepted for publication in AJ, 12 pages, 5 figure
    • …
    corecore