2,382 research outputs found

    Self-compensating solenoid valve

    Get PDF
    A solenoid valve is described in which both an inlet and an outlet of the valve are sealed when the valve is closed. This double seal compensates for leakage at either the inlet or the outlet by making the other seal more effective in response to the leakage and allows the reversal of the flow direction by simply switching the inlet and outlet connections. The solenoid valve has a valve chamber within the valve body. Inlet and outlet tubes extend through a plate into the chamber. A movable core in the chamber extends into the solenoid coil. The distal end of the core has a silicone rubber plug. Other than when the solenoid is energized, the compressed spring biases the core downward so that the surface of the plug is in sealing engagement with the ends of the tubes. A leak at either end increases the pressure in the chamber, resulting in increased sealing force of the plug

    Effects of Ram-Pressure from Intracluster Medium on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies

    Get PDF
    Using a simple model of molecular cloud evolution, we have quantitatively estimated the change of star formation rate (SFR) of a disk galaxy falling radially into the potential well of a cluster of galaxies. The SFR is affected by the ram-pressure from the intracluster medium (ICM). As the galaxy approaches the cluster center, the SFR increases to twice the initial value, at most, in a cluster with high gas density and deep potential well, or with a central pressure of ∼10−2cm−3keV\sim 10^{-2} cm^{-3} keV because the ram-pressure compresses the molecular gas of the galaxy. However, this increase does not affect the color of the galaxy significantly. Further into the central region of the cluster (≲1\lesssim 1 Mpc from the center), the SFR of the disk component drops rapidly due to the effect of ram-pressure stripping. This makes the color of the galaxy redder and makes the disk dark. These effects may explain the observed color, morphology distribution and evolution of galaxies in high-redshift clusters. By contrast, in a cluster with low gas density and shallow potential well, or the central pressure of ∼10−3cm−3keV\sim 10^{-3} cm^{-3} keV, the SFR of a radially infalling galaxy changes less significantly, because neither ram-pressure compression nor stripping is effective. Therefore, the color of galaxies in poor clusters is as blue as that of field galaxies, if other environmental effects such as galaxy-galaxy interaction are not effective. The predictions of the model are compared with observations.Comment: 19 pages, 9 figures, to appear in Ap

    Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow

    Full text link
    We theoretically derive the amplitude equations for a self-propelled droplet driven by Marangoni flow. As advective flow driven by surface tension gradient is enhanced, the stationary state becomes unstable and the droplet starts to move. The velocity of the droplet is determined from a cubic nonlinear term in the amplitude equations. The obtained critical point and the characteristic velocity are well supported by numerical simulations.Comment: 9 pages, 4 figure

    Nonthermal Emission Associated with Strong AGN Outbursts at the Centers of Galaxy Clusters

    Full text link
    Recently, strong AGN outbursts at the centers of galaxy clusters have been found. Using a simple model, we study particle acceleration around a shock excited by an outburst and estimate nonthermal emission from the accelerated particles. We show that emission from secondary electrons is consistent with the radio observations of the minihalo in the Perseus cluster, if there was a strong AGN outburst >~10^8 yrs ago with an energy of ~1.8x10^62 erg. The validity of our model depends on the frequency of the large outbursts. We also estimate gamma-ray emission from the accelerated particles and show that it could be detected with GLAST.Comment: Accepted for publication in ApJ

    Open String on Symmetric Product

    Get PDF
    We develop some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete lightcone quantization (DLCQ). After preparing the consistency conditions of the twisted boundary conditions for Annulus/M\"obius/Klein Bottle amplitudes in generic non-abelian orbifold, we classify the most general solutions of the constraints when the discrete group is SNS_N. We calculate the corresponding orbifold amplitudes from two viewpoints -- from the boundary state formalism and from the trace over the open string Hilbert space. It is shown that the topology of the world sheet for the short string and that of the long string in general do not coincide. For example the annulus sector for the short string contains all the sectors (torus, annulus, Klein bottle, M\"obius strip) of the long strings. The boundary/cross-cap states of the short strings are classified into three categories in terms of the long string, the ordinary boundary and the cross-cap states, and the ``joint'' state which describes the connection of two short strings. We show that the sum of the all possible boundary conditions is equal to the exponential of the sum of the irreducible amplitude -- one body amplitude of long open (closed) strings. This is typical structure of DLCQ partition function. We examined that the tadpole cancellation condition in our language and derived the well-known gauge group SO(213)SO(2^{13}).Comment: 56 pages, 11 figures, Late

    High Metallicity of the X-Ray Gas up to the Virial Radius of a Binary Cluster of Galaxies: Evidence of Galactic Superwinds at High-Redshift

    Full text link
    We present an analysis of a Suzaku observation of the link region between the galaxy clusters A399 and A401. We obtained the metallicity of the intracluster medium (ICM) up to the cluster virial radii for the first time. We determine the metallicity where the virial radii of the two clusters cross each other (~2 Mpc away from their centers) and found that it is comparable to that in their inner regions (~0.2 Zsun). It is unlikely that the uniformity of metallicity up to the virial radii is due to mixing caused by a cluster collision. Since the ram-pressure is too small to strip the interstellar medium of galaxies around the virial radius of a cluster, the fairly high metallicity that we found there indicates that the metals in the ICM are not transported from member galaxies by ram-pressure stripping. Instead, the uniformity suggests that the proto-cluster region was extensively polluted with metals by extremely powerful outflows (superwinds) from galaxies before the clusters formed. We also searched for the oxygen emission from the warm--hot intergalactic medium in that region and obtained a strict upper limit of the hydrogen density (nH<4.1x10^-5 cm^-3).Comment: Typo corrected. The published version is available on-line free of charge by the end of 2008. http://pasj.asj.or.jp/v60/sp1/60s133/60s133.pd

    Scherk-Schwarz SUSY breaking from the viewpoint of 5D conformal supergravity

    Full text link
    We reinterpret the Scherk-Schwarz (SS) boundary condition for SU(2)_R in a compactified five-dimensional (5D) Poincare supergravity in terms of the twisted SU(2)_U gauge fixing in 5D conformal supergravity. In such translation, only the compensator hypermultiplet is relevant to the SS twist, and various properties of the SS mechanism can be easily understood. Especially, we show the correspondence between the SS twist and constant superpotentials within our framework.Comment: 16 pages, no figur
    • …
    corecore