107 research outputs found

    Association between perceived exertion and executive functions with serve accuracy among male university tennis players: A pilot study

    Get PDF
    Serve in tennis is a very important strokes and is positively correlated with the rankings of the Association of Tennis Professionals ranking. This study investigated the associations between time-course changes in the ratings for perceived exertion, executive function, and second serve accuracy during 30-min tennis exercise sessions. Eleven Japanese male tennis players participated in the study, and their executive function and second serve performance were evaluated using the paper version of the Stroop Color and Word Test, followed by a serve performance test. The participants took part in a 30-min tennis exercise program and performed the Stroop Color and Word Test, heart rate (HR) check, and second serve accuracy test before and after the tennis exercise. Pearson correlation was used to determine the relationships between the ratings for perceived exertion, interference scores on Stroop Color and Word Test performance, and second serve performance. Post exercise, the rating of perceived exertion tended to correlate with serve accuracy (r = −0.57, p = 0.07) and interference score (r = 0.65, p = 0.03). The pre-to-post changes in second serve accuracy were negatively associated with the changes in interference score (r = −0.54, p = 0.08) and interference score in the posttest (r = −0.73, p = 0.01). The results suggest that time-course changes in executive function when playing tennis are positively associated with the accuracy of the second serve. These findings expand the previous knowledge regarding the positive association between time-course changes in executive functions and percentage of points won when playing tennis by including more specific skills (i.e., second serve accuracy)

    Simultaneous Wide-field Imaging of Phase and Magnitude of AC Magnetic Signal Using Diamond Quantum Magnetometry

    Full text link
    Spectroscopic analysis of AC magnetic signal using diamond quantum magnetometry is a promising technique for inductive imaging. Conventional dynamic decoupling like XY8 provides a high sensitivity of an oscillating magnetic signal with intricate dependence on magnitude and phase, complicating high throughput detection of each parameter. In this study, a simple measurement scheme for independent and simultaneous detection of magnitude and phase is demonstrated by a sequential measurement protocol. Wide-field imaging experiment was performed for an oscillating magnetic field with approximately 100μ\mum-squared observation area. Single pixel phase precision was 2.12.1^\circ for 0.76μ\muT AC magnetic signal. Our method enables potential applications including inductive inspection and impedance imaging.Comment: 9 pages, 4 figure

    A comparative theoretical study of the hydride transfer mechanisms during LiAlH4 and LiBH4 reductions

    Get PDF
    This work examined the hydride transfer processes during the reduction of formaldehyde by LiAlH4 or LiBH4, including investigations of the geometries, solvent effects and charge transfer processes along the reaction coordinate, using density functional theory (DFT). The energy and geometry results demonstrate that the transition state (TS) structure for the LiAlH4-formaldehyde complex is reactant-like, while the structure generated by LiBH4 has a product-like geometry, consistent with the Hammond postulate. From a charge density analysis, we also found that both complexes undergo the same essential hydride transfer mechanism, which consists of: (1) single electron transfer to the carbonyl carbon, (2) formation of a bridge bond (X-H-C; X=Al or B) and (3) hydrogen transfer driven by electron transfer. Subsequently, in a fourth step, a single electron flows through the X-H-C bond during transfer of the hydrogen, such that hydrogen atom or proton-coupled electron transfer occurs. In both systems, the presence of tetrahydrofuran as a solvent affects the structure and energy values during the reaction, but not the charge transfer characteristics. We propose that the rate-determining steps during hydride transfer when employing LiAlH4 and LiBH4 are one electron transfer to the carbonyl carbon and B-H bond dissociation, respectively. © 2015 Elsevier B.V.Embargo Period 24 month

    Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum

    Get PDF
    Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to uptake and phosphorylate glucose; no other route has yet been identified. Disruption of the ptsH gene in wild-type C. glutamicum resulted, as expected, in a phenotype exhibiting little growth on any of the PTS sugars: glucose, fructose, and sucrose. However, a suppressor mutant that grew on glucose but not on the other two sugars was spontaneously isolated from the PTS-negative strain WT Delta ptsH. The suppressor strain SPH2, unlike the wild-type strain, exhibited a phenotype of resistance to 2-deoxyglucose which is known to be a toxic substrate for the glucose-PTS of this microbe, suggesting that strain SPH2 utilizes glucose via a different system involving a permease and native glucokinases. Analysis of the C. glutamicum genome sequence using Escherichia coli galactose permease, which can transport glucose, led to the identification of two candidate genes, iolT1 and iolT2, both of which have been reported as myo-inositol transporters. When cultured on glucose medium supplemented with myo-inositol, strain WT Delta ptsH was able to consume glucose, suggesting that glucose uptake was mediated by one or more myo-inositol-induced transporters. Overexpression of iolT1 alone and that of iolT2 alone under the gapA promoter in strain WT Delta ptsH rendered the strain capable of growing on glucose, proving that each transporter played a role in glucose uptake. Disruption of iolT1 in strain SPH2 abolished growth on glucose, whereas disruption of iolT2 did not, revealing that iolT1 was responsible for glucose uptake in strain SPH2. Sequence analysis of the iol gene cluster and its surrounding region identified a single-base deletion in the putative transcriptional regulator gene Cgl0157 of strain SPH2. Introduction of the frameshift mutation allowed strain WT Delta ptsH to grow on glucose, and further deletion of iolT1 abolished the growth again, indicating that inactivation of Cgl0157 under a PTS-negative background can be a means by which to express the iolT1-specified glucose uptake bypass instead of the native PTS. When this strategy was applied to a defined lysine producer, the engineered strain displayed increased lysine production from glucose.ArticleAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 90(4):1443-1451 (2011)journal articl

    Simulation of molecular Auger spectra using a two-electron Dyson propagator

    Get PDF
    In order to simulate Auger electron spectra (AES), we propose the use of the two-electron Dyson propagator with the shifted denominator approximation (SD2). The double ionization potentials (DIPs) of molecules calculated using the SD2 method have shown good agreement with experimental data. This method can be used to calculate each DIP separately, and reducing the matrix dimensionality into that of only a two-hole configurations. We carried out AES simulations of water (H2O), ethylene (C2H4), and formaldehyde (H2CO) molecules and compared with the observed spectra. Furthermore Auger line shapes of glycine and hydrated glycine molecules were simulated, it found out that the peaks of nitrogen K-LL Auger were broadened due to hydration. From these results, we conclude that the SD2 method is very useful for the calculation of DIPs to investigate the properties of a double ionized molecule. © 2016 Elsevier B.V. All rights reserved.Embargo Period 24 month
    corecore