49 research outputs found

    Single‐Crystal‐to‐Single‐Crystal Installation of Ln₄(OH)₄ Cubanes in an Anionic Metallosupramolecular Framework

    Full text link
    Postsynthetic installation of lanthanide cubanes into a metallosupramolecular framework via a single-crystal-to-single-crystal (SCSC) transformation is presented. Soaking single crystals of K6[Rh4Zn4O(l-cys)12] (K6[1]; l-H2cys=l-cysteine) in a water/ethanol solution containing Ln(OAc)3 (Ln3+=lanthanide ion) results in the exchange of K+ by Ln3+ with retention of the single crystallinity, producing Ln2[1] (2Ln) and Ln0.33[Ln4(OH)4(OAc)3(H2O)7][1] (3Ln) for early and late lanthanides, respectively. While the Ln3+ ions in 2Ln exist as disordered aqua species, those in 3Ln form ordered hydroxide-bridged cubane clusters that connect [1]6− anions in a 3D metal-organic framework through coordination bonds with carboxylate groups. This study shows the utility of an anionic metallosupramolecular framework with carboxylate groups for the creation of a series of metal cubanes that have great potential for various applications, such as magnetic materials and heterogeneous catalysts.This is the pre-peer reviewed version of the following article: N. Yoshinari, N. Meundaeng, H. Tabe, Y. Yamada, S. Yamashita, Y. Nakazawa, T. Konno, Angewandte Chemie. 2020, 132, 18204., which has been published in final form at https://doi.org/10.1002/ange.202008296.This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    Observation of water transport in the micro-porous layer of a polymer electrolyte fuel cell with a freezing method and cryo-scanning electron microscope

    Get PDF
    Micro-porous layers (MPLs) play an important role in the water management of polymer electrolyte fuel cells (PEFCs), however, the detailed mechanism of how the produced water is drained from these layers is not well understood. This paper observed the cross-sectional distribution of liquid water inside the cathode MPL to elucidate details of the phase state of the water transported through the MPL The freezing method and ctyo-scanning electron microscope (cryo-SEM) are used for the observations; the freezing method enables immobilization of the liquid water in the cell as ice forms by the freezing, and the cryo-SEM can visualize the water distribution in the vicinity of the MPL at high resolution without the ice melting. It was shown that no liquid water accumulates inside the MPL in operation at 35 degrees C, while the pores of the MPL are filled with liquid water under very low cell temperature operation, at 5 degrees C. These results indicate that the produced water passes through the MPL not as a liquid but in the vapor state in usual PEFC operation. Additionally, liquid water at the interface between the MPL and a catalyst layer (CL) was identified, and the effect of the interfacial contact on the water distribution was examined

    Water Transport and PEFC Performance with Different Interface Structure between Micro-Porous Layer and Catalyst Layer

    Get PDF
    For interfaces between micro-porous layers (MPL) and catalyst layers (CL) made by the gas diffusion electrode (GDE) method, a seamless interface without gaps, shows better performance than that of cells with an interface made by the decal transfer method. With the decal transfer method, the MPL is simply hot-pressed to the CL-membrane assembly. This study investigates the effect of interface structure on cell performance and water transport in the MPL. Water distribution in cross sections of multiple layers were observed by a freezing method, where the cell is cooled below freezing temperature in short time and the water was observed in ice form by Cryo-SEM. The results show that a membrane electrode assembly (MEA) using the GDE method improves cell performance at high current densities. Direct observations by the freezing method and cryo-SEM show that there is no water accumulation at the MPL/CL interface made by the GDE method, while water accumulates at the interface made by the decal method. Other observations show that the water amount inside the MPL increases similarly in the two types of MEA when lowering the temperature, and the difference between the two types of MEA was only the water amount in the interface

    Impact of micro-porous layer on liquid water distribution at the catalyst layer interface and cell performance in a polymer electrolyte membrane fuel cell

    Get PDF
    In polymer electrolyte membrane fuel cells, a gas diffusion layer (GDL) with a micro-porous layer (MPL) gives better anti-flooding performance than GDLs without an MPL. To investigate the function and mechanism of the MPL to suppress water flooding, the liquid water distribution at the cathode catalyst layer (CL) surface are observed by a freezing method; in the method liquid water is immobilized in ice form by rapid freezing, followed by disassembling the cell for observations. The ice covered area is quantified by image processing and cells with and without an MPL are compared. The results show that the MPL suppresses water accumulation at the interface due to smaller pore size and finer contact with the CL, and this results in less water flooding. Investigation of ice formed after −10 °C cold start shutdowns and the temporary performance deterioration at ordinary temperatures also indicates a significant influence of the liquid water accumulating at the interface. The importance of the fine contact between CL and MPL, the relative absence of gaps, is demonstrated by a gas diffusion electrode (GDE) which is directly coated with catalyst ink on the surface of the MPL achieving finer contact of the layers

    Immobilization of Ir(OH)3 Nanoparticles in Mesospaces of Al-SiO2 Nanoparticles Assembly to Enhance Stability for Photocatalytic Water Oxidation

    No full text
    Iridium hydroxide (Ir(OH)3) nanoparticles exhibiting high catalytic activity for water oxidation were immobilized inside mesospaces of a silica-nanoparticles assembly (SiO2NPA) to suppress catalytic deactivation due to agglomeration. The Ir(OH)3 nanoparticles immobilized in SiO2NPA (Ir(OH)3/SiO2NPA) catalyzed water oxidation by visible light irradiation of a solution containing persulfate ion (S2O82−) and tris(2,2′-bipyridine)ruthenium(II) ion ([RuII(bpy)3]2+) as a sacrificial electron acceptor and a photosensitizer, respectively. The yield of oxygen (O2) based on the used amount of S2O82− was maintained over 80% for four repetitive runs using Ir(OH)3/SiO2NPA prepared by the co-accumulation method, although the yield decreased for the reaction system using Ir(OH)3/SiO2NPA prepared by the equilibrium adsorption method or Ir(OH)3 nanoparticles without SiO2NPA support under the same reaction conditions. Immobilization of Ir(OH)3 nanoparticles in Al3+-doped SiO2NPA (Al-SiO2NPA) results in further enhancement of the catalytic stability with the yield of more than 95% at the fourth run of the repetitive experiments

    Ice Formation Processes in PEM Fuel Cell Catalyst Layers during Cold Startup Analyzed by Cryo-SEM

    Get PDF
    For further improvements in the startup ability below freezing and the durability of polymer electrolyte fuel cells, understanding the ice formation mechanism during cold startup is particularly significant. This study observes cross-sectional ice distributions in a catalyst layer (CL) during isothermal galvanostatic operation at -20 degrees C using a cryo-scanning electron microscope. The effects of current density, cathode gas conditions, initial water content of the membrane, and cell temperature on the cold start characteristics and the ice formation process in the CL are evaluated. The observational results show that at higher current densities, the region with active ice formation moves from the membrane to the gas diffusion layer sides during the freezing period and vacant pores remain near the membrane even after cell shutdown, while the pores are completely filled with nearly-uniformly growing ice at lower current density operation. This is consistent with the experimental finding from the cold start characteristics that the estimated amount of ice accumulated in the cell until the shutdown decreases as the current density increases. Contrary to expectations, these changes are largely independent of cathode gas conditions, even with pure oxygen. Additional factors controlling the ice formation process are discussed based on the experimental results

    Analysis of Water Transport inside Hydrophilic Carbon Fiber Micro-Porous Layers with High-Performance Operation in PEFC

    Get PDF
    Polymer electrolyte membrane fuel cells using a hydrophilic micro-porous layer (MPL) consisting of carbon fiber (CF) and ionomer show better performance than those using conventional hydrophobic MPL with carbon black (CB) under a wide range of humidity conditions. This study investigates the effects of the wettability and structure of the MPL on cell performance and discusses the mechanism for improving cell performance by the hydrophilic CF-MPL at high humidity conditions. The water distribution inside the MPL is evaluated by a freezing method and cryo-SEM observations, and a comparison of the distribution and the cell performance of hydrophilic and hydrophobic MPL cells with various structures is made. The results show that the performance improvement is caused by preventing increases in concentration over-voltage at high current densities; where the fiber structure and thicker layers are important with hydrophilic MPL. In hydrophilic CF-MPL with better performance, liquid water accumulates in pores at the catalyst layer (CL) side, while there is no liquid water at the gas diffusion layer side. These results indicate that the hydrophilic CF-MPL enhances the liquid water transport from the CL due to the hydrophilic properties, and promotes water evaporation due to the large pores in the thick fiber structure
    corecore