42 research outputs found

    World Robot Challenge 2020 -- Partner Robot: A Data-Driven Approach for Room Tidying with Mobile Manipulator

    Full text link
    Tidying up a household environment using a mobile manipulator poses various challenges in robotics, such as adaptation to large real-world environmental variations, and safe and robust deployment in the presence of humans.The Partner Robot Challenge in World Robot Challenge (WRC) 2020, a global competition held in September 2021, benchmarked tidying tasks in the real home environments, and importantly, tested for full system performances.For this challenge, we developed an entire household service robot system, which leverages a data-driven approach to adapt to numerous edge cases that occur during the execution, instead of classical manual pre-programmed solutions. In this paper, we describe the core ingredients of the proposed robot system, including visual recognition, object manipulation, and motion planning. Our robot system won the second prize, verifying the effectiveness and potential of data-driven robot systems for mobile manipulation in home environments

    Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma.

    Get PDF
    横紋筋肉腫におけるゲノム・エピゲノム異常の全体図を解明 -横紋筋肉腫を4群に分類-. 京都大学プレスリリース. 2015-07-03.Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation with mutation/CN profiles, histological phenotypes and clinical behaviours. A1 and A2 subtypes, especially A1, largely correspond to alveolar histology with frequent PAX3/7 fusions and alterations in cell cycle regulators. In contrast, mostly showing embryonal histology, both E1 and E2 subtypes are characterized by high frequency of CN alterations and/or allelic imbalances, FGFR4/RAS/AKT pathway mutations and PTEN mutations/methylation and in E2, also by p53 inactivation. Despite the better prognosis of embryonal RMS, patients in the E2 are likely to have a poor prognosis. Our results highlight the close relationships of the methylation status and gene mutations with the biological behaviour in RMS

    Stabilizing the Structure of LiCoPO4 Nanocrystals via Addition of Fe3+: Formation of Fe3+ Surface Layer, Creation of Diffusion-Enhancing Vacancies, and Enabling High-Voltage Battery Operation

    Get PDF
    Factors affecting the cyclability of the Fe-substituted LiCoPO4 (LiCo0.8Fe0.2PO4, LCFP) material were elucidated, including both the structural and electrode/electrolyte stability. Electrochemical characterization of the synthesized LCFP nanoparticles lends clear evidence for improved electrochemical stability of LCP, as well as enhanced rate capability, with Fe3+ substitution. Surface analysis using X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) suggest that Fe enrichment on the surface of LCFP occurs through the oxidation of Fe2+ into Fe3+ in the synthesis process. The Fe3+-rich phase on the LCP surface enhances the stability of the delithiated phase, preventing oxidative reactions with electrolytes during high-voltage operation. This surface protection persists as long as the electrochemical reduction of Fe3+ is avoided by ensuring that the full range of operating voltages lie above the Fe3+/Fe2+ redox potential. Our findings may offer new approaches to stabilize the structure of LCP and other high-voltage positive electrodes for use in 5 V-class Li-ion batteries

    Noncrystalline Nanocomposites as a Remedy for the Low Diffusivity of Multivalent Ions in Battery Cathodes

    Get PDF
    Rechargeable batteries using multivalent metals are among the most promising next-generation battery systems due to their high capacity, high safety, and low cost compared with lithium-ion batteries. However, strong cation−anion interaction degrades diffusion in solid cathodes, an effect that must be mitigated to yield practical multivalent metal batteries. We show that a highly defective iron phosphate−carbon composite prepared by ultracentrifugation serves as a reversible insertion/deinsertion for magnesium ions with, and operates beyond, a 2-V cell voltage at room temperature. A composite of noncrystalline particles that embeds the surrounding carbon structure enhances the magnesium-ion diffusion in the solid phase with stability for cycle life. X-ray absorption spectroscopy, transmission electron microscopy with energy-dispersive X-ray spectroscopy, and high-energy X-ray scattering measurements demonstrate magnesium-ion insertion and extraction in the defective iron phosphate without conversion reactions. This work suggests promising applications for highly defective structures as intercalation hosts for multivalent ions

    腫瘍用人工膝関節置換術後患者の歩行時の手術膝以外の下肢関節による代償戦略

    Get PDF
    京都大学0048新制・課程博士博士(人間健康科学)甲第18199号人健博第16号新制||人健||2(附属図書館)31057京都大学大学院医学研究科人間健康科学系専攻(主査)教授 黒木 裕士, 教授 足立 壯一, 教授 三谷 章学位規則第4条第1項該当Doctor of Human Health SciencesKyoto UniversityDFA

    Factors associated with physical function in patients after surgery for soft tissue sarcoma in the thigh

    No full text
    Abstract Purpose This study aimed to examine the validity of the timed up and go test (TUGT), which is a representative, objective, and functional assessment that can evaluate walking speed, strength, and balance, and determine the significant factors associated with physical dysfunction in the early postoperative period in patients with soft tissue sarcomas (STSs). Methods This retrospective, single-center, observational study conducted at the National Cancer Center Hospital included 54 patients with STSs in the thigh who underwent surgery. The Musculoskeletal Tumor Society (MSTS) score, which subjectively evaluates the affected limb, was evaluated at discharge, and TUGT was performed preoperatively and at discharge. Higher scores indicated good limb function in the MSTS score and poor performance in the TUGT. Spearman’s correlation analysis was performed to identify the relationship between the MSTS score and TUGT. A receiver operating characteristic curve was used to calculate the cut-off value of the change in pre- and postoperative TUGT for an MSTS score of ≥ 80%. To examine the significant factors associated with physical dysfunction, multivariate regression analysis was performed using the change in pre- and postoperative TUGT as the dependent variable. Results Postoperative TUGT and the change in pre- and postoperative TUGT were significantly associated with the MSTS score. The cut-off value for the change in pre- and postoperative TUGT for acceptable affected lower-limb function was 3.7 s. Furthermore, quadriceps muscle resection was significantly associated with the change in pre- and postoperative TUGT in the early postoperative period. Conclusions TUGT could be a useful objective evaluation tool for postoperative patients with STSs. The cut-off value for the change in TUGT can be used to monitor postoperative recovery. If recovery is prolonged, a rehabilitation program can be designed according to the severity of the functional impairment in muscle strength, balance, or gait. In addition, sufficient information should be obtained regarding the presence or absence of quadriceps resection, which has a significant impact on postoperative performance

    Association between physical function and the load pattern during stepping-up motion in community-dwelling elderly women

    Get PDF
    Objective: Stepping-up motion is challenging task for elderly people in daily life. The present study investigated the relationship between the load pattern during stepping-up motion at maximum speed and physical function in elderly women. Methods: The subjects comprised 109 community-dwelling elderly women (age 72.5 ± 5.3 years). The load pattern (maximum load, rate of load production, and stepping-up time) during ascending a 30 cm step at maximum speed was measured, using a step up platform that measures the load at the lower and upper level. Physical function, including hip and knee extensor strength and performance on the vertical jump test, one-legged stance test, timed “Up & Go” (TUG) test, and stepping test were measured. Results: Pearson’s correlation analysis showed that stepping-up time was correlated with the maximum load at the lower level (r = −0.51), but not with the maximum load at the upper level. A multiple regression analysis showed that hip extensor strength and performance on the vertical jump, TUG, and stepping tests were significant determinants of the load pattern during stepping-up motion in the elderly women. Conclusions: Our study revealed that rapid stepping-up ability was more closely related to the maximum load during push-off at the lower level rather than that during weight loading on the upper level, and that the load pattern during stepping-up motion in elderly women was associated with various physical functions such as the hip extensor strength, leg muscle power, dynamic balance function, and agility

    Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripotent stem cells

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) show variable differentiation potential due to their epigenomic heterogeneity, whose extent/attributes remain unclear, except for well-studied elements/chromosomes such as imprints and the X chromosomes. Here, we show that seven hiPSC lines with variable germline potential exhibit substantial epigenomic heterogeneity, despite their uniform transcriptomes. Nearly a quarter of autosomal regions bear potentially differential chromatin modifications, with promoters/CpG islands for H3K27me3/H2AK119ub1 and evolutionarily young retrotransposons for H3K4me3. We identify 145 large autosomal blocks (≥100 kb) with differential H3K9me3 enrichment, many of which are lamina-associated domains (LADs) in somatic but not in embryonic stem cells. A majority of these epigenomic heterogeneities are independent of genetic variations. We identify an X chromosome state with chromosome-wide H3K9me3 that stably prevents X chromosome erosion. Importantly, the germline potential of female hiPSCs correlates with X chromosome inactivation. We propose that inherent genomic properties, including CpG density, transposons, and LADs, engender epigenomic heterogeneity in hiPSCs

    Single-Cell RNA-Sequencing Reveals the Breadth of Osteoblast Heterogeneity

    Get PDF
    The current paradigm of osteoblast fate is that the majority undergo apoptosis, while some further differentiate into osteocytes and others flatten and cover bone surfaces as bone lining cells. Osteoblasts have been described to exhibit heterogeneous expression of a variety of osteoblast markers at both transcriptional and protein levels. To explore further this heterogeneity and its biological significance, Venus-positive (Venus+) cells expressing the fluorescent protein Venus under the control of the 2.3-kb Col1a1 promoter were isolated from newborn mouse calvariae and subjected to single-cell RNA sequencing. Functional annotation of the genes expressed in 272 Venus+ single cells indicated that Venus+ cells are osteoblasts that can be categorized into four clusters. Of these, three clusters (clusters 1 to 3) exhibited similarities in their expression of osteoblast markers, while one (cluster 4) was distinctly different. We identified a total of 1920 cluster-specific genes and pseudotime ordering analyses based on established concepts and known markers showed that clusters 1 to 3 captured osteoblasts at different maturational stages. Analysis of gene co-expression networks showed that genes involved in protein synthesis and protein trafficking between endoplasmic reticulum (ER) and Golgi are active in these clusters. However, the cells in these clusters were also defined by extensive heterogeneity of gene expression, independently of maturational stage. Cells of cluster 4 expressed Cd34 and Cxcl12 with relatively lower levels of osteoblast markers, suggesting that this cell type differs from actively bone-forming osteoblasts and retain or reacquire progenitor properties. Based on expression and machine learning analyses of the transcriptomes of individual osteoblasts, we also identified genes that may be useful as new markers of osteoblast maturational stages. Taken together, our data show much more extensive heterogeneity of osteoblasts than previously documented, with gene profiles supporting diversity of osteoblast functional activities and developmental fates.HY, SO, and YY were supported in part by the JSPS KAKENHI, Grants-in-Aid for Scientific Research (17K11613 [HY]; 18K17258 [SO]; 18K19647 [YY]). YY was also supported by the Ono Pharmaceutical Foundation. Part of this work was carried out at the Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University
    corecore