3 research outputs found

    Origins of the Photocatalytic NO<sub><i>x</i></sub> Oxidation and Storage Selectivity of Mixed Metal Oxide Photocatalysts: Prevalence of Electron-Mediated Routes, Surface Area, and Basicity

    No full text
    MgO, CaO, SrO, or BaO-promoted TiO2/Al2O3 was utilized in the photocatalytic NOx oxidation and storage reaction. Photocatalytic performance was investigated as a function of catalyst formulation, calcination temperature, and relative humidity. Onset of the photocatalytic activity in TiO2/Al2O3 coincides with the transition from the anatase to rutile phase and increasing number of paramagnetic active centers and oxygen vacancies. Disordered AlOx domains enable the formation of oxygen vacancies and paramagnetic centers on titania domains, hindering the nucleation and growth of titania particles, as well as increasing specific surface area (SSA) to store oxidized NOx species away from titania active sites. Both e–- and h+-mediated pathways contribute to photocatalytic NO conversion. Experiments performed using an e– scavenger (i.e., H2O2), suppressing the e–-mediated route, attenuated the photocatalytic selectivity by triggering NO2(g) release. Superior NOx storage selectivity of 7.0Ti/Al-700 as compared to other TiO2/Al2O3 systems in the literature was attributed to an interplay between the presence of electrons trapped at oxygen vacancies and superoxide species allowing a direct pathway for the complete NO oxidation to HNO3/NO3– species, and the relatively large SSA of the photocatalyst prevents the rapid saturation of the photocatalyst with oxidation products. Longevity of the 7.0Ti/Al-700 was improved by the incorporation of CaO, emphasizing the importance of the surface basicity of the NOx storage site

    Two-Dimensional Bimetallic Hydroxide Nanostructures for Catalyzing Low-Temperature Aerobic C–H Bond Activation in Alkylarene and Alcohol Partial Oxidation

    No full text
    Two-dimensional (2D) bimetallic NixMn1–x(OH)y layered double hydroxide (LDH) nanostructures were synthesized and optimized as a remarkably active catalytic platform for low-temperature aerobic C–H bond activation in alkylarenes and partial oxidation of alcohols using a wide substrate (i.e., reactant) and diverse solvent scope. The NixMn1–x(OH)y structure consists of nonprecious and earth-abundant metals that can effectively operate at low catalyst loadings, requiring only molecular oxygen as the stoichiometric oxidant. Structurally diverse alkylarenes as well as primary and secondary alcohols were shown to be competent substrates where oxidation products were obtained in excellent yields (93–99%). Comprehensive catalyst structural characterization via XRD, ATR-IR, TEM, EDX, XPS, BET, and TGA indicated that the ultimately optimized Ni0.6Mn0.4(OH)y-9S catalyst possessed not only particular rotational faults in its β-Ni0.6Mn0.4(OH)y domains but also distinct α/β-Ni0.6Mn0.4(OH)y interstratification disorders, in addition to a relatively high specific surface area of 125 m2/g, a 2D platelet morphology, and an average Mn oxidation state of +3.5, suggesting the presence of both Mn3+ and Mn4+ species in its structure working in a synergistic fashion with the Ni2+/x+ cations (the latter is justified by the lack of catalytic activity in the monometallic LDH catalysts Ni(OH)2 and Mn(OH)2). Kinetic isotope effect studies carried out in the fluorene oxidation reaction (kH/kD = 5.7) revealed that the rate-determining step of the catalytic oxidation reaction directly involved the scission of a C–H bond. Moreover, the optimized catalyst was demonstrated to be reusable through the application of a regeneration protocol, which can redeem the full initial activity of the carbon-poisoned spent catalyst in the fluorene oxidation reaction

    Low-Pressure Deuterium Storage on Palladium-Coated Titanium Nanofilms: A Versatile Model System for Tritium-Based Betavoltaic Battery Applications

    No full text
    Deuterium (D2(g)) storage of Pd-coated Ti ultra-thin films at relatively low pressures is fine-tuned by systematically controlling the thicknesses of the catalytic Pd overlayer, underlying Ti ultra-thin film domain, D2(g) pressure (PD2), duration of D2(g) exposure, and the thin film temperature. Structural properties of the Ti/Pd nanofilms are investigated via XRD, XPS, AFM, SEM, and TPD to explore new structure-functionality relationships. Ti/Pd thin film systems are deuterated to obtain a D/Ti ratio of up to 1.53 forming crystallographically ordered titanium deuteride (TiDx) phases with strong Tix+–Dy– electronic interactions and high thermal stability, where >90% of the stored D resides in the Ti component, thermally desorbing at >460 °C in the form of D2(g). Electronic interaction between Pd and D is weak, yielding metallic (Pd0) states where D storage occurs mostly on the Pd film surface (i.e., without forming ordered bulk PdDx phases) leading to the thermal desorption of primarily DOH(g) and D2O(g) at <265 °C. D-storage typically increases with increasing Ti film thickness, PD2, T, and t, whereas D-storage is found to be sensitive to the thickness and the surface roughness of the catalytic Pd overlayer. Optimum Pd film thickness is determined to be 10 nm providing sufficient surface coverage for adequate wetting of the underlying Ti film while offering an appropriate number of surface defects (roughness) for D immobilization and a relatively short transport pathlength for efficient D diffusion from Pd to Ti. The currently used D-storage optimization strategy is also extended to a realistic tritium-based betavoltaic battery (BVB) device producing promising β-particle emission yields of 164 mCi/cm2, an open circuit potential (VOC) of 2.04 V, and a short circuit current (ISC) of 7.2 nA
    corecore