47 research outputs found

    Extended Ellipsoidal Outer-Bounding Set-Membership Estimation for Nonlinear Discrete-Time Systems with Unknown-but-Bounded Disturbances

    Get PDF
    This paper develops an extended ellipsoidal outer-bounding set-membership estimation (EEOB-SME) algorithm with high accuracy and efficiency for nonlinear discrete-time systems under unknown-but-bounded (UBB) disturbances. The EEOB-SME linearizes the first-order terms about the current state estimations and bounds the linearization errors by ellipsoids using interval analysis for nonlinear equations of process and measurement equations, respectively. It has been demonstrated that the EEOB-SME algorithm is stable and the estimation errors of the EEOB-SME are bounded when the nonlinear system is observable. The EEOB-SME decreases the computation load and the feasible sets of EEOB-SME contain more true states. The efficiency of the EEOB-SME algorithm has been shown by a numerical simulation under UBB disturbances

    A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Get PDF
    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful

    Characterization, Antimicrobial Properties and Coatings Application of Gellan Gum Oxidized with Hydrogen Peroxide

    No full text
    The effect of hydrogen peroxide (H2O2) oxidation on the physicochemical, gelation and antimicrobial properties of gellan gum was studied. The oxidized gellan gum (OGG) was characterized by measuring the carboxyl/carbonyl group contents, Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The H2O2 oxidation resulted in a large increase in the carboxyl groups in gellan gum. The OGG lost gelation ability by oxidation even in the presence of metal ions. The antimicrobial activities of the OGG against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal (Aspergillus niger) were tested. The OGG could inhibit the growth of both bacteria and fungal, and the activity was improved with an increase in the oxidation level. Finally, the application of the OGG as an active coatings material to extend the storage of apples was tested

    Sn-doped BaO–TiO 2

    No full text

    Development of integrated localization and wireless communication and its application in the underground coal mine

    No full text
    Integrated localization and wireless communication(ILWC) is a new information technology based on hardware resources and software information sharing to realize the coordination of location and communication functions. This paper briefly introduces the research progress of wireless communication technology and localization technology, and reveals that ILWC technology is the inevitable result of the bearer services expansion of wireless communication system. This study summarizes the definition and connotation of ILWC technology in different research. The core idea of ILWC is defined as 'hardware integration and software sharing'. The research progress of ILWC technology is summarized according to the two stages of equipment reuse and deep fusion. Combined with the particularity of the scene of the coal mine, the concept of ILWC in the coal mine is put forward. Based on the sharing of time, space, spectrum, computing and other resources, the technology is the fusion technology of communication function and localization function with an automatic scene perception and dynamic and adaptive resource allocation mechanism. The adaptability of underground ILWC in roadway, central substation, underground parking lot, coal working face and other scenes is discussed. It is pointed out that the challenges faced by underground ILWC are the complexity of underground wireless channel, unbalanced deployment of base stations and precise recognition of complex underground scene

    Xylan-Derived Light Conversion Nanocomposite Film

    No full text
    A new type of sustainable light conversion nanocomposite film was fabricated by using carboxymethyl xylan as matrix and xylan-derived carbon dots (CDs) as both light conversion regents and nano reinforcements. The results demonstrate that CDs can not only significantly enhance the mechanical strength of the nanocomposite film because of chemical reaction between CDs and carboxymethyl xylan, but also impart the film with excellent optical properties. With 1.92 wt% CDs, the tensile strength and elastic modulus of the film are increased by 114.3% and 90.7%, respectively. Moreover, the film has typical excitation and emission spectra, enabling the efficient absorption of UV and the conversion of UV to blue light. This xylan-derived light conversion nanocomposite film is expected to be used in agricultural planting and food packaging

    Comprehensive Analysis of the Global Zenith Tropospheric Delay Real-Time Correction Model Based GPT3

    No full text
    To obtain a higher accuracy for the real-time Zenith Tropospheric Delay (ZTD), a refined tropospheric delay correction model was constructed by combining the tropospheric delay correction model based on meteorological parameters and the GPT3 model. The meteorological parameters provided by the Global Geodetic Observing System (GGOS) Atmosphere and the zenith tropospheric delay data provided by Centre for Orbit Determination in Europe (CODE) were used as references, and the accuracy and spatial–temporal characteristics of the proposed model were compared and studied. The results show the following: (1) Compared with the UNB3m, GPT and GPT2w models, the accuracy and stability of the GPT3 model were significantly improved, especially the estimation accuracy of temperature, the deviation (Bias) of the estimated temperature was reduced by 90.60%, 32.44% and 0.30%, and the root mean square error (RMS) was reduced by 42.40%, 11.02% and 0.11%, respectively. (2) At different latitudes, the GPT3 + Saastamoinen, GPT3 + Hopfield and UNB3m models had great differences in accuracy and applicability. In the middle and high latitudes, the Biases of the GPT3 + Saastamoinen model and the GPT3 + Hopfield model were within 0.60 cm, and the RMS values were within 4 cm; the Bias of the UNB3m model was within 2 cm, and the RMS was within 5 cm; in low latitudes, the accuracy and stability of the GPT3 + Saastamoinen model were better than those of the GPT3 + Hopfield and UNB3m models; compared with the GPT3 + Hopfield model, the Bias was reduced by 22.56%, and the RMS was reduced by 5.67%. At different heights, the RMS values of the GPT3 + Saastamoinen model and GPT3 + Hopfield model were better than that of the UNB3m model. When the height was less than 500 m, the Biases of the GPT3 + Saastamoinen, GPT3 + Hopfield and UNB3m models were 3.46 cm, 3.59 cm and 4.54 cm, respectively. At more than 500 m, the Biases of the three models were within 4 cm. In different seasons, the Bias of the ZTD estimated by the UNB3m model had obvious global seasonal variation. The GPT3 + Saastamoinen model and the GPT3 + Hopfield model were more stable, and the values were within 5 cm. The research results can provide a useful reference for the ZTD correction accuracy and applicability of GNSS navigation and positioning at different latitudes, at different heights and in different seasons

    Vascular Endothelial Cell-Derived Exosomal Sphingosylphosphorylcholine Attenuates Myocardial Ischemia–Reperfusion Injury through NR4A2-Mediated Mitophagy

    No full text
    Cardiomyocyte survival is a critical contributing process of host adaptive responses to cardiovascular diseases (CVD). Cells of the cardiovascular endothelium have recently been reported to promote cardiomyocyte survival through exosome-loading cargos. Sphingosylphosphorylcholine (SPC), an intermediate metabolite of sphingolipids, mediates protection against myocardial infarction (MI). Nevertheless, the mechanism of SPC delivery by vascular endothelial cell (VEC)-derived exosomes (VEC-Exos) remains uncharacterized at the time of this writing. The present study utilized a mice model of ischemia/reperfusion (I/R) to demonstrate that the administration of exosomes via tail vein injection significantly diminished the severity of I/R-induced cardiac damage and prevented apoptosis of cardiomyocytes. Moreover, SPC was here identified as the primary mediator of the observed protective effects of VEC-Exos. In addition, within this investigation, in vitro experiments using cardiomyocytes showed that SPC counteracted myocardial I/R injury by activating the Parkin and nuclear receptor subfamily group A member 2/optineurin (NR4A2/OPTN) pathways, in turn resulting in increased levels of mitophagy within I/R-affected myocardium. The present study highlights the potential therapeutic effects of SPC-rich exosomes secreted by VECs on alleviating I/R-induced apoptosis in cardiomyocytes, thereby providing strong experimental evidence to support the application of SPC as a potential therapeutic target in the prevention and treatment of myocardial infarction
    corecore