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This paper develops an extended ellipsoidal outer-bounding set-membership estimation (EEOB-SME) algorithm with high
accuracy and efficiency for nonlinear discrete-time systems under unknown-but-bounded (UBB) disturbances. The EEOB-SME
linearizes the first-order terms about the current state estimations and bounds the linearization errors by ellipsoids using interval
analysis for nonlinear equations of process andmeasurement equations, respectively. It has been demonstrated that the EEOB-SME
algorithm is stable and the estimation errors of the EEOB-SME are bounded when the nonlinear system is observable. The EEOB-
SME decreases the computation load and the feasible sets of EEOB-SME contain more true states.The efficiency of the EEOB-SME
algorithm has been shown by a numerical simulation under UBB disturbances.

1. Introduction

State estimation of dynamical systems from disturbances
observations is one of the fundamental problems in con-
trol and signal processing. Based on the Bayesian theory,
traditional state estimation algorithms are commonly solved
under statistics assumptions of process and measurement
disturbances, which have been extensively studied in last
decades.Themost common approach in recursive estimation
is Kalman Filter (KF) [1], and the corresponding stochastic
state estimators are the extended Kalman Filter (EKF) [2,
3], unscented Kalman Filter [4], and particle filter [5] for
nonlinear systems. However, traditional state estimation
algorithms, which aim to construct the posterior density of
the estimated state, estimates of the variance with stochastic
disturbances under the stochastic framework, sometimes give
biased results when statistical assumptions are not satisfied.
In many real-time engineering applications, the probabilistic
distribution assumptions of the process or measurement
disturbances are often insufficient and cannot be determined
precisely with a few system input and output records.

Under the assumption of unknown-but-bounded (UBB)
disturbances, the set-membership estimation (SME) algo-
rithm is considered to be an attractive alternative for state
estimation [6]. Set-membership methods with deterministic
noise assumptions have been largely investigated in the past
40 years in systems state or parameter estimation literatures.
Unlike probabilistic approaches, the only assumptions of
process and measurement disturbances are UBB and there
are not any assumptions in the deterministic bounded dis-
turbances.The solution of the set-membership estimation is a
feasible set rather than the posterior density of state variables.
The feasible set is a complex convex set in the state space,
which is consistent with the system model, the input and
output data, and UBB disturbances.The centre of the feasible
set is used as a point estimate. Because of the complicated
shape of the true feasible set, the key problem in set-
membership estimation is to use simple convex geometric set,
such as ellipsoid [7], interval [8], and zonotope [9], to reduce
the complexity of algorithms. As the intuitive mathematical
derivation and computational efficient algorithm, ellipsoidal
setmethods are claimed to bemuch better inmany situations.
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The first ellipsoidal set method for set-membership state
estimation was established in [6] and developed to optimal
control problem with parametric families of ellipsoids in
[10]. The optimal bounding ellipsoid for parameter identifi-
cation is proposed in [11]. Under the minimum-volume and
minimum-trace criteria, optimal ellipsoidal state-bounding
algorithms were introduced in [12–14]. With selective mea-
surement update scheme [15], a set-membership state esti-
mation algorithm was proposed by minimizing the upper
bound on a Lyapunov function of the estimation error
in observation update [16] and was developed with the
nonincreasing property of the estimation errors in [17]. The
multi-input multioutput situation was developed in [18]. By
maximizing the decrease of a Lyapunov function of the
estimation error in the worse noise case, an input-to-state
stable (ISS) set-membership state estimation was presented
in [19]. Recently, with lower computation load than the set-
membership state estimation algorithm in [19], the ellipsoidal
state-bounding-based set-membership estimation (ES-SME)
is proposed [20].

There are relatively fewer results to be available to deal
with nonlinear cases for SME algorithms. A set-valued
observer for nonlinear systems was produced in [21]. An
extended set-membership filter for dynamic nonlinear sys-
temswas proposedwith interval analysis and the convergence
of the filter was proved in [22]. A UD factorization-based
set-membership filter with suboptimal bounding ellipsoids to
improve the numeric stability was presented in [23]. Based
on DC programming, a set-membership state estimation
algorithm for nonlinear discrete-time systems with tight
boundswas developed in [24].Using theTakagi-Sugeno fuzzy
model, the set-membership fuzzy filtering was established for
nonlinear discrete-time systems [25]. The ellipsoidal state-
bounding algorithms for nonlinear systems were used in
flight control [26], neural networks training [27], tracking
[28], and power system dynamic state estimation [29].

For nonlinear systems, the extended Kalman filter lin-
earizes the state trajectory about the current state estimate
and the EKF is known to give biased estimates. Using
similar linearization technologies to EKF, nonlinear set-
membership filters had been explored with predetermined
explicit assumptions of linearization error bounds in [22,
23]. Due to the complexity of nonlinear transformation of
feasible sets and the lack of accurate bounding information,
the nonlinearity of the system may seriously degrade the
performance of the above mentioned state estimation algo-
rithms. There are still several challenges to estimate the state
for nonlinear system with UBB disturbances.

To improve the estimation accuracy and reduce the
computation load, this paper extends the ES-SME algo-
rithm to nonlinear discrete-time systems and proposes an
extended ellipsoidal outer-bounding set-membership esti-
mation (EEOB-SME) algorithm. The paper is presented as
follows.The ES-SME algorithm is introduced in Section 2. In
Section 3, the ES-SME is extended to nonlinear system with
interval analysis and the EEOB-SME algorithm is proposed.
Section 4 analyses the stability of the proposed EEOB-SME.
The effectiveness of the EEOB-SME is demonstrated through

a numerical simulation in Section 5. Section 6 concludes the
paper.

2. Ellipsoidal Outer-Bounding SME for
Linear System

2.1. Recursive Structure of the ES-SME

Definition 1. An ellipsoid set is given by the set 𝐸(a, 𝜎2P) =
{x ∈ R𝑛 : (x − a)𝑇(𝜎2P)−1(x − a) ≤ 1}, where a ∈ R𝑛
is the centre of the ellipsoid and 𝜎

2P ∈ R𝑛×𝑛 called the
shape-defining matrix of ellipsoid is a symmetric positive
definitematrix which defines the shape and orientation of the
ellipsoid. The variable 𝜎2 ∈ R is a scalar variable.

Consider the linear discrete-time system in state space
form

x
𝑘
= F
𝑘−1

x
𝑘−1

+ w
𝑘−1
, (1)

y
𝑘
= H
𝑘
x
𝑘
+ v
𝑘
, (2)

where x
𝑘
∈ R𝑛 is the state vector and y

𝑘
∈ R𝑚 is the

observation vector at time 𝑘. F
𝑘−1

∈ R𝑛×𝑛 and H
𝑘
∈ R𝑛×𝑚

are known matrices. The disturbance w
𝑘
and v

𝑘
are UBB

disturbances in the time and measurement equations, which
are confined to the following ellipsoid sets:
w
𝑘−1

∈ 𝐸 (0,W
𝑘−1
) ⇐⇒ {w

𝑘−1
∈ R𝑛 : w𝑇

𝑘−1
W−1
𝑘−1

w
𝑘−1

≤ 1} , (3)

v
𝑘
∈ 𝐸 (0,V

𝑘
) ⇐⇒ {v

𝑘
∈ R𝑚 : v𝑇

𝑘
V−1
𝑘
v
𝑘
≤ 1} , (4)

whereW
𝑘−1

andV
𝑘
are known positive definite matrices. It is

assumed that the initial state belongs to a known ellipsoid set

𝐸 (0, 𝜎
2

0
P
0
)

= {x
0
∈ R𝑛 : (x

0
− x̂
0
)
𝑇 P−1
0
(x
0
− x̂
0
) ≤ 𝜎
2

0
} ,

(5)

where x̂
0
is the estimation result of x

0
at the initial time.

The recursive structures of ellipsoidal outer-bounding
set-membership estimation are time update and measure-
ment update, which are similar to the Kalman Filter. Assume
at time 𝑘 − 1, the ellipsoid 𝐸(x̂

𝑘−1
, 𝜎
2

𝑘−1
P
𝑘−1
) contains the

state vector x
𝑘−1

. From (1) and (3), the priori state estimation
x
𝑘|𝑘−1

lies in the vector sum of the linear transform ellipsoid
F
𝑘−1
𝐸(x̂
𝑘−1
, 𝜎
2

𝑘−1
P
𝑘−1
) and ellipsoid 𝐸(0,W

𝑘−1
),

x
𝑘|𝑘−1

∈ F
𝑘−1
𝐸 (x̂
𝑘−1
, 𝜎
2

𝑘−1
P
𝑘−1
) ⊕ 𝐸 (0,W

𝑘−1
) . (6)

Generally, the vector sum of two ellipsoids is not an ellipsoid;
we find an ellipsoid 𝐸(x̂

𝑘|𝑘−1
, 𝜎
2

𝑘|𝑘−1
P
𝑘|𝑘−1

) called the state
prediction ellipsoid to contain the convex set of the vector
sum,

𝐸 (x̂
𝑘|𝑘−1

, 𝜎
2

𝑘|𝑘−1
P
𝑘|𝑘−1

)

⊃ F
𝑘−1
𝐸 (x̂
𝑘−1
, 𝜎
2

𝑘−1
P
𝑘−1
) ⊕ 𝐸 (0,W

𝑘−1
) .

(7)

At time 𝑘, the state x
𝑘
lies in the intersection of the

observation ellipsoid 𝑆
𝑘
and the state prediction ellipsoid

𝐸(x̂
𝑘|𝑘−1

, 𝜎
2

𝑘|𝑘−1
P
𝑘|𝑘−1

),

x
𝑘
∈ 𝐸 (x̂

𝑘|𝑘−1
, 𝜎
2

𝑘|𝑘−1
P
𝑘|𝑘−1

) ∩ 𝑆
𝑘
, (8)
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where the observation ellipsoid is

𝑆
𝑘
= {x
𝑘
∈ R𝑛 : (y

𝑘
−H
𝑘
x
𝑘
)
𝑇V−1
𝑘
(y
𝑘
−H
𝑘
x
𝑘
) ≤ 1} . (9)

Normally, the intersection set of two ellipsoids is not an
ellipsoid. It has to find an ellipsoid x

𝑘
∈ 𝐸(x̂

𝑘
, 𝜎
2

𝑘
P
𝑘
) called

the updated state ellipsoid to contain the intersection set,

𝐸 (x̂
𝑘
, 𝜎
2

𝑘
P
𝑘
) ⊃ 𝐸 (x̂

𝑘|𝑘−1
, 𝜎
2

𝑘|𝑘−1
P
𝑘|𝑘−1

) ∩ 𝑆
𝑘
. (10)

Lemma 2 (see [20]). The recursive procedures for ES-SME
algorithm are the following equations.

Time Update. Assuming a known state x
𝑘−1

which lies in
the ellipsoid 𝐸(x̂

𝑘−1
, 𝜎
2

𝑘−1
P
𝑘−1
), we have x

𝑘|𝑘−1
∈ 𝐸(x̂

𝑘|𝑘−1
,

𝜎
2

𝑘|𝑘−1
P
𝑘|𝑘−1

),

x̂
𝑘|𝑘−1

= F
𝑘−1

x̂
𝑘−1
, (11)

P
𝑘|𝑘−1

= (1 − 𝜌
𝑘
)
−1 F
𝑘−1

P
𝑘−1

F𝑇
𝑘−1

+ (𝜎
2

𝑘|𝑘−1
𝜌
𝑘
)
−1

W
𝑘−1
,

(12)

𝜎
2

𝑘|𝑘−1
= 𝜎
2

𝑘−1
, (13)

where the value of parameter 𝜌
𝑘
belongs to (0, 1) and 𝜎2

𝑘|𝑘−1
is

positive.

Observation Update. Given the observation ellipsoid 𝑆
𝑘
and

the state prediction ellipsoid 𝐸(x̂
𝑘|𝑘−1

, 𝜎
2

𝑘|𝑘−1
P
𝑘|𝑘−1

), the state
x
𝑘
∈ 𝐸(x̂

𝑘
, 𝜎
2

𝑘
P
𝑘
),

x̂
𝑘
= x̂
𝑘|𝑘−1

+ K
𝑘
𝛿
𝑘
, (14)

P
𝑘
=

1

1 − 𝜆
𝑘

[I − K
𝑘
H
𝑘
]P
𝑘|𝑘−1

, (15)

𝜎
2

𝑘
= (1 − 𝜆

𝑘
) 𝜎
2

𝑘|𝑘−1
+ 𝜆
𝑘
− 𝛿
𝑇

𝑘
Q−1
𝑘
𝛿
𝑘
, (16)

K
𝑘
=

1

1 − 𝜆
𝑘

P
𝑘|𝑘−1

H𝑇
𝑘
Q−1
𝑘
, (17)

Q
𝑘
=

1

𝜆
𝑘

V
𝑘
+

1

1 − 𝜆
𝑘

H
𝑘
P
𝑘|𝑘−1

H𝑇
𝑘
, (18)

𝛿
𝑘
= y
𝑘
−H
𝑘
x̂
𝑘|𝑘−1

, (19)

where the value of parameter 𝜆
𝑘
belongs to (0, 1) and 𝜎2

𝑘
is

positive.

Remark 3. The covariance of the posterior estimation error
in the ES-SME algorithm can be written

P
𝑘
=

1

1 − 𝜆
𝑘

[I − K
𝑘
H
𝑘
]P
𝑘|𝑘−1

[I − K
𝑘
H
𝑘
]
𝑇

+
1

𝜆
𝑘

K
𝑘
V
𝑘
K𝑇
𝑘
.

(20)

And the gain matrix in the ES-SME algorithm has another
expression

K
𝑘
= 𝜆
𝑘
P
𝑘
H𝑇
𝑘
V−1
𝑘
. (21)

Remark 4. The scalar variable 𝜎2
𝑘
presents the upper bound of

a Lyapunov function of the posteriori estimation error, which
is the inequation ‖x

𝑘
− x̂
𝑘
‖P−1
𝑘

≤ 𝜎
2

𝑘
.

Remark 5. Through the assumption of UBB disturbances, a
time-varying ellipsoid set is acquired in state space which
always contains the true state of linear system. The shape-
defining matrices 𝜎2

𝑘
P
𝑘
of ellipsoids, which are equal to

covariance matrices in KF, represent the uncertainty of the
estimate results. The estimation accuracy is evaluated by
the measure of the ellipsoid set. The size of an ellipsoid is
measured by its volume or trace.

2.2. Optimal Parameters Selection in the ES-SME. Com-
monly, the minimum-volume or minimum-trace criterion
is used to compute the optimal scalar parameters 𝜌

𝑘
and

𝜆
𝑘
in time and measurement update. For the computation

efficiency, parameter 𝜌
𝑘
is computed under the minimum-

trace criterion [14]

𝜌
𝑘
=

√tr (W
𝑘−1
)

√tr (𝜎2
𝑘−1

F
𝑘−1

P
𝑘−1

F𝑇
𝑘−1
) + √tr (W

𝑘−1
)

. (22)

According to Lemma 6, the optimal parameter 𝜆
𝑘
in

measurement update is computed through minimizing the
upper bound of scalar variable 𝜎2

𝑘
.

Lemma 6 (see [20]). Let the initial condition 𝜎
2

0|0
≤ 1

and 𝛽
𝑘
= (1 − 𝜎

2

𝑘|𝑘−1
)/(𝛿
𝑇

𝑘
𝛿
𝑘
), where 𝛿

𝑘
= V
𝑘
𝛿
𝑘
, G
𝑘
=

V
𝑘
H
𝑘
P
𝑘|𝑘−1

H𝑇
𝑘
V𝑇
𝑘
, V−1
𝑘

= V𝑇
𝑘
V
𝑘
, and 𝑔

𝑘
is the maximum

eigenvalue of G
𝑘
. Minimizing parameter 𝜆

𝑘
with respect to

scalar variable 𝜎2
𝑘
, where 𝜎2

𝑘
= (1 − 𝜆

𝑘
)𝜎
2

𝑘|𝑘−1
+ 𝜆
𝑘
− 𝜆
𝑘
(1 −

𝜆
𝑘
)(𝛿
𝑇

𝑘
𝛿
𝑘
/((1 − 𝜆

𝑘
) + 𝜆
𝑘
𝑔
𝑘
)), one can obtain the following:

𝜆
𝑘

=

{{{{{{{{

{{{{{{{{

{

0 𝜎
2

𝑘|𝑘−1
+ 𝛿
𝑇

𝑘
𝛿
𝑘
≤ 1

(1 − 𝛽
𝑘
)

2
𝑔
𝑘
= 1

1

1 − 𝑔
𝑘

[1 − √
𝑔
𝑘

1 + 𝛽
𝑘
(𝑔
𝑘
− 1)

] 𝑔
𝑘

̸= 1,

(23)

where parameter 𝜆
𝑘
lies in [0, 1).

Remark 7. The method in Lemma 6 avoids the complexity
computation forminimum-volume or trace criterion [14] and
avoids solving the equation with the same dimension of the
output vector for Becis-Aubry’s set-membership estimation
(BA-SME) [19].

3. Extended Ellipsoidal Outer-Bounding SME

The EKF considers the first-order terms used for time update
and measurement update, and the second-order terms is
defined as the Lagrange remainder. The main idea of EEOB-
SME is to linearize the nonlinear systems about the current
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estimation and use interval mathematics to acquire the
bound of the higher order terms. Then, the bound of the
linearization error is combined together with the process
or measurement disturbances to acquire a new disturbances
ellipsoid, which can be seen as new UBB disturbances. The
state prediction ellipsoid and the updated state ellipsoid can
be estimated recursively by applying a linear set-membership
estimation algorithm at each time step.

Consider a nonlinear discrete-time state space system

x
𝑘+1

= 𝑓 (x
𝑘
) + w
𝑘
, (24)

y
𝑘+1

= ℎ (x
𝑘+1
) + v
𝑘+1
, (25)

where 𝑓(⋅) and ℎ(⋅) are nonlinear 𝐶2 functions and the other
variables are defined in Section 2.

Linearizing equation (24) about the current state estimate
x̂
𝑘
yields

x
𝑘+1

= 𝑓 (x
𝑘
)
󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

+
𝜕𝑓 (x
𝑘
)

𝜕x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

(x
𝑘
− x̂
𝑘
)

+ 𝑂 (x2
𝑘
) + w
𝑘
,

(26)

where 𝜕𝑓(x
𝑘
)/𝜕x is the gradient of the nonlinear function

𝑓(⋅). The term 𝑂(x2
𝑘
) represents the high order terms, which

are equal to the linearization error.
Define an interval vector X

𝑘
called the state interval

bound, which can take on any value over the interval where
(x
𝑘
− x̂
𝑘
) is defined. Then the state interval bound X

𝑘
based

on the ellipsoid extrema is

X𝑖
𝑘
= [x̂𝑖
𝑘
− √P𝑖,𝑖
𝑘

x̂𝑖
𝑘
+ √P𝑖,𝑖
𝑘
] , 𝑖 = 1, . . . , 𝑛, (27)

where the superscripts 𝑖, 𝑗 denote the (𝑖, 𝑗) element of amatrix
[22].

Considering the scalar case for simplicity, (26) can be
expanded with a remainder

x
𝑘+1

= 𝑓 (x
𝑘
)
󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

+
𝜕𝑓 (x
𝑘
)

𝜕x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

(x
𝑘
− x̂
𝑘
) + ⋅ ⋅ ⋅

+
𝑓 (x
𝑘
)
𝑛
𝑟

𝑛
𝑟
!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

(x
𝑘
− x̂
𝑘
)
𝑛
𝑟

+ 𝑅
𝑛
𝑟

(x
𝑘
− x̂
𝑘
,X
𝑘
) + w
𝑘
,

(28)

where 𝑅
𝑛
𝑟

(x
𝑘
− x̂
𝑘
,X
𝑘
) is a remainder term and 𝑓(x

𝑘
)
𝑛
𝑟 is the

(𝑛
𝑟
)th derivative about the estimation x

𝑘
. Evaluating 𝑅

𝑛
𝑟

(x
𝑘
−

x̂
𝑘
,X
𝑘
) by interval mathematics [30], 𝑅

𝑛
𝑟

(x
𝑘
− x̂
𝑘
,X
𝑘
) can

be bounded by an interval, which is defined by the interval
vector X

𝑘
. The interval of the Lagrange remainder is written

as

𝑅
𝑛
𝑟

(x
𝑘
− x̂
𝑘
,X
𝑘
) =

𝑓 (X
𝑘
)
𝑛
𝑟

+1

(𝑛
𝑟
+ 1)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

(x
𝑘
− x̂
𝑘
)
𝑛
𝑟

+1

. (29)

Considering the expansion of the dynamics (28) with 𝑛
𝑟
=

1, the remainder term can be seen as simple function of the
Hessian of the nonlinear dynamics

𝑅
2
(x
𝑘
− x̂
𝑘
,X
𝑘
) =

1

2

𝜕
2
𝑓 (X
𝑘
)

𝜕x2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

(x
𝑘
− x̂
𝑘
)
2

, (30)

and (28) can be written as

x
𝑘+1

= 𝑓 (x
𝑘
)
󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

+
𝜕𝑓 (x
𝑘
)

𝜕x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

(x
𝑘
− x̂
𝑘
)

+
1

2

𝜕
2
𝑓 (X
𝑘
)

𝜕x2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x
𝑘

=x̂
𝑘

(x
𝑘
− x̂
𝑘
)
2

+ w
𝑘
.

(31)

The expression for the general multistate case is shown

X
𝑅
2

=
1

2
diag (X

𝑘
− x̂
𝑘
)
𝑇
[
[
[
[

[

H
𝑓
1 (X
𝑘
)

.

.

.

H
𝑓
𝑛 (X
𝑘
)

]
]
]
]

]

(X
𝑘
− x̂
𝑘
) , (32)

whereH
𝑓
𝑗(⋅) = 𝜕

2
𝑓(⋅)/𝜕x2 is the Hessian matrix of nonlinear

function 𝑓(⋅) [22].
The interval of the Lagrange remainder can be bounded

using an ellipsoid [12]. Minimizing the volume of the ellip-
soid, a unique closed form solution is written as

[W
𝑘
]
𝑖,𝑗

=

{

{

{

2(X𝑖+
𝑅
2

− X𝑖−
𝑅
2

)

2

𝑖 = 𝑗

0 𝑖 ̸= 𝑗,

(33)

where the subscripts + and − denote the maximum and
minimum values in the interval X

𝑅
𝑘

. Then the ellipsoid of
linearization error is defined as 𝐸(0,W

𝑘
).

Combine with the process disturbance ellipsoid and the
linearization error ellipsoid into a new ellipsoid bound called
the extended process disturbance ellipsoid 𝐸(0, Ŵ

𝑘
)

ŵ
𝑘
∈ 𝐸 (0, Ŵ

𝑘
) ⊃ 𝐸 (0,W

𝑘
) ⊕ 𝐸 (0,W

𝑘
) (34)

Ŵ
𝑘
=

W
𝑘

1 − 𝑝ŵ
𝑘

+
W
𝑘

𝑝ŵ
𝑘

, (35)

where 𝑝ŵ
𝑘

is a parameter to be chosen to minimize the
ellipsoid 𝐸(0, Ŵ

𝑘
).
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The measurement equation should be dealt with in
the same way as calculating ŵ

𝑘
to acquire the extended

measurement disturbance ellipsoid 𝐸(0, V̂
𝑘+1
),

X𝑖
𝑘+1|𝑘

= [x̂𝑖
𝑘+1|𝑘

− √P𝑖,𝑖
𝑘+1|𝑘

x̂𝑖
𝑘+1|𝑘

+ √P𝑖,𝑖
𝑘+1|𝑘

] ,

𝑖 = 1, . . . , 𝑛,

Y
𝑅
2

= 𝑅
2
(x
𝑘+1

− x̂
𝑘+1|𝑘

,X
𝑘+1|𝑘

) =
1

2

⋅ diag (X
𝑘+1|𝑘

− x̂
𝑘+1|𝑘

)
𝑇

⋅

[
[
[
[

[

H
ℎ
1 (X
𝑘+1|𝑘

)

.

.

.

H
ℎ
𝑚 (X
𝑘+1|𝑘

)

]
]
]
]

]

(X
𝑘
− x̂
𝑘+1|𝑘

) ,

[V
𝑘+1
]
𝑖,𝑗

=

{

{

{

2(Y𝑖+
𝑅
𝑘

− Y𝑖−
𝑅
𝑘

)

2

𝑖 = 𝑗

0 𝑖 ̸= 𝑗.

v̂
𝑘+1

∈ 𝐸 (0, V̂
𝑘+1
) ⊃ 𝐸 (0,V

𝑘+1
) ⊕ 𝐸 (0,V

𝑘+1
) ,

V̂
𝑘+1

=
V
𝑘+1

1 − 𝑝v̂
𝑘+1

+
V
𝑘+1

𝑝v̂
𝑘+1

.

(36)

Remark 8. Thespecific procedures of the extendedEOB-SME
algorithm are summarized as follows:

(i) At time 𝑘 = 1, initialise x̂
0
, P
0
, and 𝜎2

0
= 1.

(ii) At each time step 𝑘, the state interval X
𝑘
and the lin-

earization error interval of process equation X
𝑅
2

are
given by (27) and (32).Then the extended process dis-
turbance ellipsoid 𝐸(0, Ŵ

𝑘
) can be calculated by (35).

Let x̂
𝑘+1|𝑘

= 𝑓(x̂
𝑘
) and F

𝑘
= (𝜕𝑓(x

𝑘
)/𝜕x
𝑘
)|x
𝑘

=x̂
𝑘

; then
the state prediction ellipsoid 𝐸(x̂

𝑘+1|𝑘
, 𝜎
2

𝑘+1|𝑘
P
𝑘+1|𝑘

) is
computed by (11)–(13), whereW

𝑘
is replaced by Ŵ

𝑘
.

(iii) The extended measurement ellipsoid 𝐸(0, V̂
𝑘+1
) can

be calculated by (36). Let ŷ
𝑘+1

= ℎ(x̂
𝑘+1|𝑘

) andH
𝑘+1

=

(𝜕ℎ(x
𝑘+1
)/𝜕x
𝑘+1
)|x
𝑘

=x̂
𝑘+1|𝑘

; then the updated ellipsoid
𝐸(x̂
𝑘+1
, 𝜎
2

𝑘+1
P
𝑘+1
) is given by (14)–(18), where V

𝑘+1
is

replaced by V̂
𝑘+1

and the time index 𝑘 is changed to
𝑘 + 1. And 𝛿

𝑘+1
is 𝛿
𝑘+1

= y
𝑘+1

− ℎ(x̂
𝑘+1|𝑘

).
(iv) Iterate recursive updates (i)–(iii) until the program is

terminated.

4. Stability Analysis

In this section, the stability analysis of the EEOB-SME is
presented based on analysing linearization error dynamics.
Because the shape-defining matrix of ellipsoid is similar to
the estimation error covariance matrix in KF, the way to the
stability analysis is the following [22, 31].The EEOB-SME can
be shown to be asymptotically stable with no disturbances
and has an upper bound for the nonzero disturbances case.

Definition 9. The nonlinear observability test is satisfied if

𝑂 (x̂
𝑘
) =

(
(
(
(

(

𝜕ℎ

𝜕x
(x
𝑘
)

𝜕ℎ

𝜕x
(x
𝑘+1
)
𝜕𝑓

𝜕x
(x
𝑘
)

.

.

.

𝜕ℎ

𝜕x
(x
𝑘+𝑛−1

)
𝜕𝑓

𝜕x
(x
𝑘+𝑛−2

) ⋅ ⋅ ⋅
𝜕𝑓

𝜕x
(x
𝑘
)

)
)
)
)

)

(37)

has rank 𝑛.

Lemma 10 (see [32]). Consider the system given by (24) and
(25) without process disturbances. Then there are ∃𝜇 > 0 such
that F

𝑘
= 𝜕𝑓(x

𝑘
)/𝜕x
𝑘
and H

𝑘+1
= 𝜕ℎ(x

𝑘+1
)/𝜕x
𝑘+1

satisfy the
uniform observability test if ‖x

𝑘
− x̂
𝑘
‖ ≤ 𝜇.

Lemma 11 (see [33]). If the pair (F
𝑘
,H
𝑘
) is uniformly observ-

able, then there exist two real numbers 𝑠 and 𝑠, such that 𝑠×I ≤
P
𝑘+1|𝑘

≤ 𝑠 × I and 𝑠 × I ≤ P
𝑘
≤ 𝑠 × I.

Defining the estimation error

𝜁
𝑘
= x
𝑘
− x̂
𝑘|𝑘−1

,

𝜁
𝑘+1

= x
𝑘+1

− x̂
𝑘+1|𝑘

.

(38)

Let

𝑓 (x
𝑘
) − 𝑓 (x̂

𝑘
) = F
𝑘
(x
𝑘
− x̂
𝑘
) + 𝜑 (x

𝑘
, x̂
𝑘
) , (39)

ℎ (x
𝑘
) − ℎ (x̂

𝑘|𝑘−1
) = H

𝑘
(x
𝑘
− x̂
𝑘|𝑘−1

) + 𝜒 (x
𝑘
, x̂
𝑘|𝑘−1

) . (40)

Then

𝜁
𝑘+1

= 𝑓 (x
𝑘
) + w
𝑘
− 𝑓 (x̂

𝑘
)

= F
𝑘
(x
𝑘
− x̂
𝑘
) + 𝜑 (x

𝑘
, x̂
𝑘
) + w
𝑘

= F
𝑘
(x
𝑘
− x̂
𝑘|𝑘−1

) − F
𝑘
K
𝑘
(y
𝑘
− ℎ (x̂

𝑘|𝑘−1
))

+ 𝜑 (x
𝑘
, x̂
𝑘
) + w
𝑘

= F
𝑘
(x
𝑘
− x̂
𝑘|𝑘−1

)

− F
𝑘
K
𝑘
(ℎ (x
𝑘
) + k
𝑘
− ℎ (x̂

𝑘|𝑘−1
)) + 𝜑 (x

𝑘
, x̂
𝑘
)

+ w
𝑘

= F
𝑘
𝜁
𝑘
− F
𝑘
K
𝑘
H
𝑘
(x
𝑘
− x̂
𝑘|𝑘−1

) + 𝜑 (x
𝑘
, x̂
𝑘
)

− F
𝑘
K
𝑘
𝜒 (x
𝑘
, x̂
𝑘|𝑘−1

) + w
𝑘
− F
𝑘
K
𝑘
k
𝑘

= F
𝑘
(I − K

𝑘
H
𝑘
) 𝜁
𝑘
+ r
𝑘
+ w
𝑘
− F
𝑘
K
𝑘
k
𝑘
,

(41)

where

r
𝑘
= 𝜑 (x

𝑘
, x̂
𝑘
) − F
𝑘
K
𝑘
𝜒 (x
𝑘
, x̂
𝑘|𝑘−1

) . (42)

Theorem 12. Consider symmetric positive shape-defining
matrices P

𝑘
and P

𝑘|𝑘−1
. Define Π

𝑘
and Π

𝑘|𝑘−1
by Π
𝑘|𝑘−1

=
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P−1
𝑘|𝑘−1

and Π
𝑘
= P−1
𝑘
, 𝑝
𝑘+1

= (1 − 𝜌
𝑘+1
)/𝜌
𝑘+1

, and assume
F−1
𝑘

and (I − K
𝑘
H
𝑘
)
−𝑇 exist for 𝑘 > 0. Then

Π
𝑘+1|𝑘

≤ (1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) F−𝑇
𝑘
(I − K

𝑘
H
𝑘
)
−𝑇

⋅ [Π
𝑘|𝑘−1

− (1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
)

⋅Π
𝑘|𝑘−1

((1 + 𝑝
−1

𝑘+1
)
−1

Π
𝑘

+ 𝜎
2

𝑘
(1 + 𝑝

−1

𝑘+1
)
−1

F𝑇
𝑘
Ŵ−1
𝑘
F
𝑘
)

−1

Π
𝑘|𝑘−1

] (I

− K
𝑘
H
𝑘
)
−1 F−1
𝑘
.

(43)

Proof. From (20), it is easy to obtain

P
𝑘
≥

1

1 − 𝜆
𝑘

[I − K
𝑘
H
𝑘
]P
𝑘|𝑘−1

[I − K
𝑘
H
𝑘
]
𝑇

. (44)

Taking the inverse of (44), we have

Π
𝑘
≤ (1 − 𝜆

𝑘
) [I − K

𝑘
H
𝑘
]
−𝑇

Π
𝑘|𝑘−1

[I − K
𝑘
H
𝑘
]
−1

. (45)

From (12), we have

P
𝑘+1|𝑘

= F
𝑘
[(1 + 𝑝

−1

𝑘+1
)P
𝑘
+
(1 + 𝑝

𝑘+1
) F−1
𝑘
W
𝑘
F−𝑇
𝑘

𝜎
2

𝑘|𝑘−1

] F𝑇
𝑘
,

(46)

and then

Π
𝑘+1|𝑘

= F−𝑇
𝑘
[(1 + 𝑝

−1

𝑘+1
)P
𝑘

+
(1 + 𝑝

𝑘+1
) F−1
𝑘
W
𝑘
F−𝑇
𝑘

𝜎
2

𝑘

]

−1

F−1
𝑘
= F−𝑇
𝑘
[(1

+ 𝑝
−1

𝑘+1
)
−1

Π
𝑘
− (1 + 𝑝

−1

𝑘+1
)
−1

Π
𝑘
((1 + 𝑝

−1

𝑘+1
)
−1

Π
𝑘

+ 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
)
−1 F𝑇
𝑘
W−1
𝑘
F
𝑘
)

−1

(1 + 𝑝
−1

𝑘+1
)
−1

Π
𝑘
]

⋅ F−1
𝑘
.

(47)

From (15), it is obvious that

P𝑇
𝑘
=

1

1 − 𝜆
𝑘

P
𝑘|𝑘−1

[I − K
𝑘
H
𝑘
]
𝑇

, (48)

and we obtain

Π
𝑘
= (1 − 𝜆

𝑘
)Π
𝑘|𝑘−1

[I − K
𝑘
H
𝑘
]
−1

= (1 − 𝜆
𝑘
) [I − K

𝑘
H
𝑘
]
−𝑇

Π
𝑘|𝑘−1

.

(49)

According to (45), we have

Π
𝑘+1|𝑘

≤ F−𝑇
𝑘
[(1 + 𝑝

−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) (I − K

𝑘
H
𝑘
)
−𝑇

⋅Π
𝑘|𝑘−1

(I − K
𝑘
H
𝑘
)
−1

− (1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) (I

− K
𝑘
H
𝑘
)
−𝑇

Π
𝑘|𝑘−1

((1 + 𝑝
−1

𝑘+1
)
−1

Π
𝑘

+ 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
)
−1 F𝑇
𝑘
W−1
𝑘
F
𝑘
)

−1

(1 + 𝑝
−1

𝑘+1
)
−1

(1

− 𝜆
𝑘
)Π
𝑘|𝑘−1

(I − K
𝑘
H
𝑘
)
−1

] F−1
𝑘
≤ (1 + 𝑝

−1

𝑘+1
)
−1

(1

− 𝜆
𝑘
) F−𝑇
𝑘
(I − K

𝑘
H
𝑘
)
−𝑇

[Π
𝑘|𝑘−1

− (1 + 𝑝
−1

𝑘+1
)
−1

(1

− 𝜆
𝑘
)Π
𝑘|𝑘−1

((1 + 𝑝
−1

𝑘+1
)
−1

Π
𝑘

+ 𝜎
2

𝑘
(1 + 𝑝

−1

𝑘+1
)
−1

F𝑇
𝑘
Ŵ−1
𝑘
F
𝑘
)

−1

Π
𝑘|𝑘−1

] (I

− K
𝑘
H
𝑘
)
−1 F−1
𝑘
.

(50)

The proof of Theorem 12 is completed.

Theorem 13. Assume the following assumptions hold:

(i) ‖F
𝑘
‖ ≤ 𝑎, ‖H

𝑘
‖ ≤ 𝑐, ‖K

𝑘
‖ ≤ 𝑘, 𝑝 × I ≤ P

𝑘
≤ 𝑝 ×

I, 𝑝 × I ≤ P
𝑘|𝑘−1

≤ 𝑝 × I.

(ii) F
𝑘
is invertible for all 𝑘 ≥ 0.

(iii) There are positive real numbers 𝜀
𝜑
, 𝜀
𝜒
, 𝜅
𝜑
, and 𝜅

𝜒
, such

that nonlinear functions 𝜑(⋅) and 𝜒(⋅) in (39) and
(40) are bounded as ‖𝜑(x

𝑘
, x̂
𝑘
)‖ ≤ 𝜅

𝜑
‖x
𝑘
− x̂
𝑘
‖
2 and

‖𝜒(x
𝑘
, x̂
𝑘|𝑘−1

)‖ ≤ 𝜅
𝜒
‖x
𝑘
− x̂
𝑘|𝑘−1

‖
2 for x

𝑘
, x̂
𝑘
, and

x̂
𝑘|𝑘−1

∈ 𝑅
𝑛 with ‖x

𝑘
− x̂
𝑘
‖ ≤ 𝜀
𝜑
and ‖x

𝑘
− x̂
𝑘|𝑘−1

‖ ≤ 𝜀
𝜒
,

respectively.

Then the EEOB-SME algorithm gives ellipsoidal estimates
where the error between the centre of the ellipsoid and the true
state converges to zero, when the disturbances are zero.

Proof. From (14) and (40), x
𝑘
− x̂
𝑘
= x
𝑘
− x̂
𝑘|𝑘−1

−K
𝑘
H
𝑘
(x
𝑘
−

x̂
𝑘|𝑘−1

)−K
𝑘
𝜒(x
𝑘
, x̂
𝑘|𝑘−1

)−K
𝑘
k
𝑘
. When the disturbances k

𝑘
are

zero, we have

x
𝑘
− x̂
𝑘
= x
𝑘
− x̂
𝑘|𝑘−1

− K
𝑘
H
𝑘
(x
𝑘
− x̂
𝑘|𝑘−1

)

− K
𝑘
𝜒 (x
𝑘
, x̂
𝑘|𝑘−1

) ,

(51)

According to the assumptions (i) and (iii) it is not difficult to
see that

󵄩󵄩󵄩󵄩x𝑘 − x̂
𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩x𝑘 − x̂

𝑘|𝑘−1

󵄩󵄩󵄩󵄩 + 𝑘𝑐
󵄩󵄩󵄩󵄩x𝑘 − x̂

𝑘|𝑘−1

󵄩󵄩󵄩󵄩

+ 𝑘𝜅
𝜒

󵄩󵄩󵄩󵄩x𝑘 − x̂
𝑘|𝑘−1

󵄩󵄩󵄩󵄩

2

≤ (1 + 𝑘𝑐 + 𝑘𝜅
𝜒
𝜀
𝜒
)
󵄩󵄩󵄩󵄩x𝑘 − x̂

𝑘|𝑘−1

󵄩󵄩󵄩󵄩 .

(52)
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From (42), we obtain

󵄩󵄩󵄩󵄩r𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜑 (x𝑘, x̂𝑘)
󵄩󵄩󵄩󵄩 + 𝑎𝑘

󵄩󵄩󵄩󵄩𝜒 (x𝑘, x̂𝑘|𝑘−1)
󵄩󵄩󵄩󵄩 .

(53)

Choosing

𝜀 = min(𝜀
𝜒
,

𝜀
𝜑

1 + 𝑘𝑐 + 𝑘𝜅
𝜒
𝜀
𝜒

) , (54)

for any ‖x
𝑘
− x̂
𝑘|𝑘−1

‖ ≤ 𝜀, it is easy to verify that

󵄩󵄩󵄩󵄩r𝑘
󵄩󵄩󵄩󵄩 ≤ 𝜅𝜑 (1 + 𝑘𝑐 + 𝑘𝜅𝜒𝜀𝜒)

󵄩󵄩󵄩󵄩x𝑘 − x̂
𝑘|𝑘−1

󵄩󵄩󵄩󵄩

2

+ 𝑎𝑘𝜅
𝜒

󵄩󵄩󵄩󵄩x𝑘 − x̂
𝑘|𝑘−1

󵄩󵄩󵄩󵄩

2

.

(55)

Let 𝜅 = 𝜅
𝜑
(1 + 𝑘𝑐 + 𝑘𝜅

𝜒
𝜀
𝜒
) + 𝑎𝑘𝜅

𝜒
; we have

󵄩󵄩󵄩󵄩r𝑘
󵄩󵄩󵄩󵄩 ≤ 𝜅

󵄩󵄩󵄩󵄩x𝑘 − x̂
𝑘|𝑘−1

󵄩󵄩󵄩󵄩

2

. (56)

Define the Lyapunov functionV
𝑘
(𝜁
𝑘
) = 𝜁
𝑇

𝑘
Π
𝑘|𝑘−1
𝜁
𝑘
; from

the assumption (i), we obtain

1

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

2

≤ V
𝑘
(𝜁
𝑘
) ≤

1

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

2

. (57)

When the disturbances are zero in (41), the estimation error is
𝜁
𝑘+1

= F
𝑘
(I−K

𝑘
H
𝑘
)𝜁
𝑘
+ r
𝑘
and the following can be obtained

V
𝑘+1

(𝜁
𝑘+1
) = 𝜁
𝑇

𝑘+1
Π
𝑘+1|𝑘
𝜁
𝑘+1

= 𝜁
𝑇

𝑘
(I − K

𝑘
H
𝑘
)
𝑇

⋅ F𝑇
𝑘
Π
𝑘+1|𝑘

F
𝑘
(I − K

𝑘
H
𝑘
) + 2r𝑇

𝑘
Π
𝑘+1|𝑘

F
𝑘
(I

− K
𝑘
H
𝑘
) 𝜁
𝑘
+ r𝑇
𝑘
Π
𝑘+1|𝑘

r
𝑘
≤ 𝜁
𝑇

𝑘
(1 + 𝑝

−1

𝑘+1
)
−1

(1

− 𝜆
𝑘
) [Π
𝑘|𝑘−1

− (1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
)

⋅Π
𝑘|𝑘−1

((1 + 𝑝
−1

𝑘+1
)
−1

Π
𝑘

+ 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
)
−1 F𝑇
𝑘
W−1
𝑘
F
𝑘
)

−1

Π
𝑘|𝑘−1

] 𝜁
𝑘

+ 2r𝑇
𝑘
Π
𝑘+1|𝑘

F
𝑘
(I − K

𝑘
H
𝑘
) 𝜁
𝑘
+ r𝑇
𝑘
Π
𝑘+1|𝑘

r
𝑘
.

(58)

Then (58) can be written as

V
𝑘+1

(𝜁
𝑘+1
)

≤ (1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) 𝜁
𝑇

𝑘
Π
𝑘|𝑘−1
𝜁
𝑘

−

(1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
)
2 󵄩󵄩󵄩󵄩𝜁𝑘

󵄩󵄩󵄩󵄩

2

𝑝2 [(1 + 𝑝
−1

𝑘+1
)
−1

𝑝 + 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
) 𝑎
2
/𝑤]

+ 2𝜅
󵄩󵄩󵄩󵄩𝜁𝑘

󵄩󵄩󵄩󵄩

2
𝑎 (1 + 𝑘𝑐)

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩 + 𝜅

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

2 𝜅𝜀

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩 .

(59)

We obtain that

V
𝑘+1

(𝜁
𝑘+1
) −V

𝑘
(𝜁
𝑘
) ≤ [(1 + 𝑝

−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) − 1]

⋅V
𝑘+1

(𝜁
𝑘+1
)

− (

(1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
)
2

𝑝2 [(1 + 𝑝
−1

𝑘+1
)
−1

𝑝 + 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
) 𝑎
2
/𝑤]

− 𝜅
󸀠 󵄩󵄩󵄩󵄩𝜁𝑘

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝜁𝑘

󵄩󵄩󵄩󵄩

2

,

(60)

where 𝜅󸀠 = 𝜅[𝑎(1+𝑘𝑐)+𝜅𝜀]/𝑝, because [(1+𝑝−1
𝑘+1
)
−1
(1−𝜆
𝑘
)−

1] = (−𝜆
𝑘
− 𝑝
−1

𝑘+1
)/(1 + 𝑝

−1

𝑘+1
) < 0, choosing

𝜀
󸀠
= min(𝜀,

(1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
)
2

𝜅󸀠𝑝2 [(1 + 𝑝
−1

𝑘+1
)
−1

𝑝 + 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
) 𝑎
2
/𝑤]

) .

(61)

It follows that V
𝑘+1
(𝜁
𝑘+1
) − V

𝑘
(𝜁
𝑘
) ≤ 0 holds for ‖𝜁

𝑘
‖ ≤

𝜀
󸀠. Then the estimation error will go to zero. The proof of
Theorem 13 is completed.

Theorem 14. Under the same assumptions in Theorem 13, the
estimation error of EEOB-SME algorithmwill acquire an upper
bound, when the disturbances are nonzero.

Proof. When the disturbances are nonzero, the estimation
error is described as

𝜁
𝑘+1

= F
𝑘
(I − K

𝑘
H
𝑘
) 𝜁
𝑘
+ r
𝑘
+ w
𝑘
− F
𝑘
K
𝑘
k
𝑘
. (62)

Then the following can be obtained

V
𝑘+1

(𝜁
𝑘+1
) = 𝜁
𝑇

𝑘+1
Π
𝑘+1|𝑘
𝜁
𝑘+1

≤ 𝜁
𝑇

𝑘
(1 + 𝑝

−1

𝑘+1
)
−1

(1

− 𝜆
𝑘
) [Π
𝑘|𝑘−1

− (1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
)

⋅Π
𝑘|𝑘−1

((1 + 𝑝
−1

𝑘+1
)
−1

Π
𝑘

+ 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
)
−1 F𝑇
𝑘
W−1
𝑘
F
𝑘
)

−1

Π
𝑘|𝑘−1

] 𝜁
𝑘

+ 2r𝑇
𝑘
Π
𝑘+1|𝑘

F
𝑘
(I − K

𝑘
H
𝑘
) 𝜁
𝑘
+ r𝑇
𝑘
Π
𝑘+1|𝑘

r
𝑘

+ 2n𝑇
𝑘
Π
𝑘+1|𝑘

F
𝑘
(I − K

𝑘
H
𝑘
) 𝜁
𝑘
+ n𝑇
𝑘
Π
𝑘+1|𝑘

n
𝑘

+ 2n𝑇
𝑘
Π
𝑘+1|𝑘

r
𝑘
,

(63)
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where n
𝑘
= w
𝑘
−F
𝑘
K
𝑘
k
𝑘
. The upper bound of disturbances is

defined as 𝑛 = 𝑤 − 𝑎𝑘V. Thus we obtain

V
𝑘+1

(𝜁
𝑘+1
)

≤ (1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) 𝜁
𝑇

𝑘
Π
𝑘|𝑘−1
𝜁
𝑘

−

(1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
)
2 󵄩󵄩󵄩󵄩𝜁𝑘

󵄩󵄩󵄩󵄩

2

𝑝2 [(1 + 𝑝
−1

𝑘+1
)
−1

𝑝 + 𝜎
2

𝑘
(1 + 𝑝

𝑘+1
) 𝑎
2
/𝑤]

+ 2𝜅
󵄩󵄩󵄩󵄩𝜁𝑘

󵄩󵄩󵄩󵄩

2
𝑎 (1 + 𝑘𝑐)

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩 + 𝜅

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

2 𝜅𝜀

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

+

2𝑛𝑎 (1 + 𝑘𝑐)

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩 +

2𝑛𝜅

𝑝

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

2

+
𝑛
2

𝑝
.

(64)

Then

V
𝑘+1

(𝜁
𝑘+1
) −V

𝑘
(𝜁
𝑘
)

≤ [(1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) − 1]V

𝑘+1
(𝜁
𝑘+1
)

+ 𝜅
1

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

3

+ 𝜅
2

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩

2

+ 𝜅
3

󵄩󵄩󵄩󵄩𝜁𝑘
󵄩󵄩󵄩󵄩 + 𝜅4,

(65)

where 𝜅
𝑖
and 𝜀
𝑖
are defined appropriately, and the following is

obtained

V
𝑘+1

(𝜁
𝑘+1
) −V

𝑘
(𝜁
𝑘
)

≤ [(1 + 𝑝
−1

𝑘+1
)
−1

(1 − 𝜆
𝑘
) − 1]V

𝑘+1
(𝜁
𝑘+1
) + 𝜅
4
.

(66)

When ‖𝜁
𝑘
‖ ≥ 𝜀
4
, the following holds:V

𝑘+1
(𝜁
𝑘+1
) −V

𝑘
(𝜁
𝑘
) ≤

0. It means estimation errors have an upper bound.The proof
of Theorem 14 is completed.

5. Numerical Simulation

The following discrete-time Van der Pol equation within
ellipsoidal bounds is to evaluate the performance of EEOB-
SME with EKF, BA-SME [19], and AESMF [23]:

[

x
1,𝑘+1

x
2,𝑘+1

] = [

x
1,𝑘
+ ℎx
2,𝑘

x
2,𝑘
+ ℎ (−9x

1,𝑘
+ 𝜇 (1 − x2

1,𝑘
) x
2,𝑘
)

]

+ w
𝑘
,

y
𝑘
= x
1,𝑘
+ v
𝑘
,

(67)

which was studied in [21]. The initial conditions are ℎ =

0.02, 𝜇 = 2, x
0
= (1, 2)

𝑇, P
0
= diag(1, 1), and 𝜎

2

0
= 1.

The process and measurement disturbances are uniformly
distributed in (−0.1, 0.1) inside bounding ellipsoids, which
have shape-defining matrix W = diag(0.01, 0.01) and v =

(−0.1, 0.1). Simulation contains𝑀 = 100Monte Carlo steps
with independent noise sequences and 𝑁 = 200 recursive
updates in each Monte Carlo step. The geometric centre of
ellipsoid is considered as the point estimation result and used
the trace criterion to compute parameter 𝑝

𝑘
in both SME
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Figure 1: Uniformly distribution in ellipsoidal bound for process
disturbances.

algorithms. The averaged root mean square error (RMSE) is
defined as RMSE

𝑖
= √∑

𝑁

𝑘=1
(x
𝑘
− x̂
𝑘
)2/𝑁/𝑀, 𝑖 = 1, 2, 3.

Figure 1 shows the UBB noises in ellipsoid bound for
process noises. First, observation noises with uniform distri-
bution are generated. Then an ellipsoid is plotted according
to the corresponding shape-defining matrix. The process
noises which are contained in the ellipsoid are used as UBB
disturbances.

After 100 Monte Carlo simulations, the averaged root
mean square errors (RMSE) between true states and esti-
mated states are shown in Figure 2. The point estimation
accuracy of EEOB-SME is better than AESMF and KF. The
RMSE of EEOB-SME for state x

1
are larger than BA-SME at

the initial stage but are gradual close to the BA-SME, which
are the most time consuming algorithm. For state x

2
, the

RMSE of EEOB-SME is equal to BA-SME and lower than
AESMF and KF.

Plots in Figure 3 show averaged guaranteed bounds in
each state variable. The bounds of EEOB-SME and BA-SME
are close to AESMF for state x

1
but are lower than AESMF

for state x
2
. Notice that the bound of ellipsoids will not vanish

and estimated results will not converge to single points with
steps increasing.

Figure 4 shows the trends of scalar variable 𝜎
2 with

recursive updates. The scalar variable 𝜎
2 of EEOB-SMF

monotonous decreases exponentially from initial value 1 to
values less than 0.1. The decline speed of EEOB-SME is faster
than BA-SME, and the average run time of EEOB-SME is
equal to AESMF.The shape-defining matrix 𝜎2

𝑘
P
𝑘
of ellipsoid

will be reduced when the bounds of scalar variable 𝜎2 are
decreasing. Notice that the smaller the value of scalar variable
𝜎
2, the smaller the volume of ellipsoids, which can be seen

from Figure 5. The values of scalar variable 𝜎2 in AESMF
change a little after decreasing initial stage.
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Figure 2: Average RMS errors of states.
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Figure 3: Guaranteed bounds and true values of states.

In Figure 5, states x
1
are the horizontal axis and states x

2

are the ordinate axis. As the direct result of remainder terms,
the state uncertainty ellipsoid for EEOB-SME and AESMF
algorithms decreases with recursive updates. Although ellip-
soid feasible sets of EEOB-SME are larger than AESMF at
the initial stage, with the decreasing of scalar variable 𝜎2

𝑘
,

the volumes of ellipsoid feasible sets for EEOB-SME are
equal to AESMF. Near the states (−2, 1), ellipsoid feasible
sets of AESMF do not contain true states of the system, but
the ellipsoid feasible sets of EEOB-SME always contain true
states. Because of larger linearization errors, ellipsoid feasible

sets of EEOB-SME and AESMF do not contain true states of
nonlinear system, which can be seen at 𝑘 = 100.

The average RMSE and run time of EEOB-SME, BA-SME,
AESMF, and Kalman Filter are summarized in Table 1. To
pay at the cost of computing time, the RMSE of BA-SME
algorithm is minimal. The average RMSE of EEOB-SME is
larger than BA-SME but the computing time of EEOB-SME
is lower thanBA-SME.Themost time consuming algorithm is
BA-SME, which is more than 2ms at each recursive step. The
average rum time of EEOB-SME, AESMF, and Kalman Filter
is less than 0.6ms and suitable for real-time application.
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Table 1: Average RMS errors of states and run time.

Method RMSE Run time (ms)
𝑒RMS,1 𝑒RMS,2 𝑡

Kalman Filter 0.0485 0.2708 0.224
AESMF 0.0481 0.2256 0.396
BA-SME 0.0436 0.2161 2.220
EEOB-SME 0.0453 0.2173 0.525

6. Conclusion

Based on UBB disturbances, this paper proposes an EEOB-
SME algorithm for nonlinear discrete-time systems. The
nonlinear equations of process and measurement equations

are linearized with the first-order terms about current state
estimations. Using interval analysis, the high order terms,
which are equal to linearization errors, are bounded by ellip-
soids. The bounds of the linearization errors are combined
together with process or measurement disturbances as new
UBB disturbances. If the nonlinear process and measure-
ment equations are observable, the EEOB-SME algorithm
is stable and the estimation errors of the EEOB-SME are
bounded. Simulations results show that the EEOB-SME has
better RMSE performance compared to Kalman Filter under
UBB disturbances, and the computation time of EEOB-
SME is lower than BA-SME. In addition, the feasible sets of
EEOB-SME contain more true states than AESMF. Thus, the
real-time application of set-membership state estimation is
improved by the EEOB-SME algorithms. Actually, the EEOB-
SME algorithm makes a balance between the estimation
accuracy and computational efficiency. However, the EEOB-
SME does not acquire the minimal point estimation results,
which is the future research direction.
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