98 research outputs found

    XAFS and IR Studies on Luminescent Silver Zeolites

    Get PDF
    In this chapter, studies of structures and optical properties of Ag-zeolite A by means of X-ray absorption fine structure (XAFS) and infrared (IR) spectra are presented. XAFS is a powerful tool to study the local structure of Ag nanoclusters in the zeolite cavity and IR spectra are quite sensitive to the change in zeolite lattice affected by the production of Ag clusters. First, we focus on the creation of Ag clusters in zeolite A by heat treatment under atmosphere and vacuum. Second, we discuss the mechanism of photoluminescence for Ag-zeolite composite. It is widely believed that the emitting point is Ag clusters in the Ag zeolite; on the other hand, our recent result is contradicted that Ag clusters are broken down in the strongly emitting species

    Energy bands of atomic monolayers of various materials: Possibility of energy gap engineering

    Full text link
    The mobility of graphene is very high because the quantum Hall effects can be observed even at room temperature. Graphene has the potential of the material for novel devices because of this high mobility. But the energy gap of graphene is zero, so graphene can not be applied to semiconductor devices such as transistors, LEDs, etc. In order to control the energy gaps, we propose atomic monolayers which consist of various materials besides carbon atoms. To examine the energy dispersions of atomic monolayers of various materials, we calculated the electronic states of these atomic monolayers using density functional theory with structural optimizations. The quantum chemical calculation software "Gaussian 03" was used under periodic boundary conditions. The calculation method is LSDA/6-311G(d,p), B3LYP/6-31G(d), or B3LYP/6-311G(d,p). The calculated materials are C (graphene), Si (silicene), Ge, SiC, GeC, GeSi, BN, BP, BAs, AlP, AlAs, GaP, and GaAs. These atomic monolayers can exist in the flat honeycomb shapes. The energy gaps of these atomic monolayers take various values. Ge is a semimetal; AlP, AlAs, GaP, and GaAs are indirect semiconductors; and others are direct semiconductors. We also calculated the change of energy dispersions accompanied by the substitution of the atoms. Our results suggest that the substitution of impurity atoms for monolayer materials can control the energy gaps of the atomic monolayers. We conclude that atomic monolayers of various materials have the potential for novel devices.Comment: This paper was first presented at the 14th International Conference on Modulated Semiconductor Structures (MSS14) held in Kobe, Japan, on 23 July 200

    Simultaneous Time-Resolved Photoluminescence and X-Ray Absorption Fine Structure Operando Measurement during Ag Cluster Formation in Ag Zeolite X

    Get PDF
    We use operando X-ray absorption fine structure (XAFS) to analyze the relation between the properties of photoluminescence (PL) and the structures of Ag clusters and Ag ions. The Ag clusters are generated by evacuation in the cavity of Ag-type zeolite-X. The Ag clusters in the zeolite cavity collapse when exposed to the atmosphere. The results reported herein indicate that the collapsing Ag cluster plays an important role in generating strong PL bands and that Ag clusters might not be a direct species of PL. Results of XAFS analysis show that the Ag cluster formed in the zeolite cavity by evacuation can be tetrahedral with four atoms. By evacuation, 9 or 10 Ag tetrahedral are formed, two of which are expected to be responsible for strong PL. This result suggests that the Ag ion position after cluster collapse plays an important role in PL band generation and that Ag clusters are not direct luminescent species of PL

    Contact Dermatitis and the Accuracy of isCGM Device

    Get PDF
    Objective: We previously reported the mean average relative difference (MARD) of the sensor glucose (SG) of the first-generation FreeStyle Libre with the original algorithm, an intermittent scanning continuous glucose monitoring (isCGM) device, was 15.6% in the Effect of Intermittent-Scanning Continuous Glucose Monitoring to Glycemic Control Including Hypoglycemia and Quality of Life of Patients with Type 1 Diabetes Mellitus Study (ISCHIA Study). In the present study, we aimed to further analyze its accuracy in detail by conducting a post-hoc analysis of the study. Methods: The ISCHIA Study was a multicenter, randomized, cross-over trial to assess the efficacy of isCGM. The SG levels of isCGM and the measured capillary blood glucose (BG) levels of 91 participants were used for the analysis. Results: Bland-Altman analysis showed bias of -13.0 mg/dl when the SG levels were compared to the BG levels, however no proportional bias was observed (r = 0.085). MARD of the participants without and with contact dermatitis were 15.0 ± 6.0% and 27.4 ± 21.4% (P = 0.001), respectively. Conclusion: There was negative bias in the SG levels of isCGM compared to the BG levels. There is a possibility that the complication of the contact dermatitis during isCGM use may be related with deteriorated accuracy of the SG levels

    Protocol for a Randomized, Crossover Trial : ISCHIA study

    Get PDF
    Objective: Intermittent-scanning continuous glucose monitoring (isCGM) is widely used in type 1 diabetes (T1D) patients; however, the education required to prevent hypoglycemia by using isCGM is not established. This study examines the combined effect of isCGM device usage and the education to reduce the time in hypoglycemia in comparison to conventional self-monitoring of blood glucose (SMBG). Methods: The Effect of Intermittent-Scanning Continuous Glucose Monitoring to Glycemic Control Including Hypoglycemia and Quality of Life of Patients with Type 1 Diabetes Mellitus Study (ISCHIA Study), a randomized, crossover trial, enrolls 104 T1D patients (age, 20-74 years) with T1D. Participants are randomized to use isCGM combined with structured education (Intervention period) or SMBG (Control period) for 84 days, followed by the other for a further 84 days. During the Intervention period, participants have access to the sensor glucose levels and trend arrow of the device. During the Control period, participants conduct SMBG at least three times a day, and retrospective CGM is used to record the blinded sensor glucose levels. The primary endpoint is the decrease of time in hypoglycemia ( < 70 mg/dL) per day (hour/day) during the Intervention period compared with the Control period. The secondary endpoints include other indices of glycemic control, glycoalbumin, accuracy of isCGM, diabetes-related quality of life (QOL), adherence, and cost-effectiveness. The study protocol has received Certified Review Board (CRB) approval from National Hospital Organization Osaka National Hospital (N2018002, February 14, 2019). This study is carried out in accordance with the Declaration of Helsinki and the Clinical Trials Act. The findings will be published in peer-reviewed journals. Conclusion: The ISCHIA study will contribute to the standardization of patient education regarding the prevention of hypoglycemia by using isCGM

    GestureCamシステム : カメラロボットを介した遠隔教育の試み

    Get PDF
    The authors are developing remote education system for hands-on training in class. The system is named the GestureCam system. The GestureCam is a remote-controlled actuator onto which a small camera and a laser pointer are mounted. The term "GestureCam System" includes other user interfaces which control the GestureCam, such as the master actuator and the touch-sensitive CRT. We expect the system to act as a surrogate teacher. In order to be a surrogate, the system should accommodate users viewing intentions; i.e. "to see what the user wants to see and to show what the user wants to show". Some remote education experiments were conducted via communication satellite. Based on these experiments, some design issues of the remote education system are discussed

    Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial

    Get PDF
    Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range. Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (≥10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL). Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 ± 1.68 h/day [10.1 %±7.0 %] vs 3.10 ± 2.28 h/day [12.9 %±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001). Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM
    corecore