2 research outputs found

    The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era

    No full text
    <p>High-grade pelitic metasedimentary rocks (khondalites) are widely distributed in the northwestern part of the North China Craton and were named the ‘Khondalite Belt’. Prior to the application of zircon geochronology, a stratigraphic division of the supracrustal rocks into several groups was established using interpretative field geology. We report here SHRIMP U–Pb zircon ages and Hf-isotope data on metamorphosed sedimentary and magmatic rocks at Daqingshan, a typical area of the Khondalite Belt. The main conclusions are as follows: (1) The early Precambrian supracrustal rocks belong to three sequences: a 2.56–2.51 Ga supracrustal unit (the previous Sanggan ‘group’), a 2.51–2.45 Ga supracrustal unit (a portion of the previous upper Wulashan ‘group’) and a 2.0–1.95 Ga supracrustal unit (including the previous lower Wulashan ‘group’, a portion of original upper Wulashan ‘group’ and the original Meidaizhao ‘group’) the units thus do not represent a true stratigraphy; (2) Strong tectono-thermal events occurred during the late Neoarchaean to late Palaeoproterozoic, with four episodes recognized: 2.6–2.5, 2.45–2.37, 2.3–2.0 and 1.95–1.85 Ga, with the latest event being consistent with the assembly of the Palaeoproterozoic supercontinent Columbia; (3) During the late Neoarchaean to late Palaeoproterozoic (2.55–2.5, 2.37 and 2.06 Ga) juvenile, mantle-derived material was added to the crust. </p

    An Early Mesozoic transcontinental palaeoriver in South China: evidence from detrital zircon U–Pb geochronology and Hf isotopes

    No full text
    <p>Detrital zircon geochronology reveals that Late Triassic–Early Jurassic fluvial sandstones from the major basins of the South China Craton have similar age patterns and define four populations at 2.6–2.4 Ga, 2.0–1.7 Ga, 850–700 Ma and 480–210 Ma. The late Palaeoproterozoic group is predominant in all of the five samples, and yielded remarkable age peaks at <em>c</em>. 1.85 Ga. These zircons have ϵ<sub>Hf</sub>(t) values between −22.5 and +3.6, suggesting derivation from reworked Archaean crust and minor juvenile crustal additions in the late Palaeoproterozoic. These characteristics differ from those of the Yangtze Block but correlate well with those of samples from the eastern Cathaysia Block. Palaeocurrent analysis of the Early Mesozoic sandstones shows predominant west- and NW-directed palaeoflows, supporting derivation of the sediments from the Cathaysia Block. The remarkable similarities in provenance signatures and spatial changes of lithofacies of the Triassic–Jurassic around the South China Craton delineate an east–west-trending sedimentary zone extending from Korea to West China. Accumulation of these sediments was probably related to the development of an active continental margin produced by westward subduction of the Palaeo-Pacific Plate. A <em>c</em>. 2000 km long westerly draining transcontinental palaeoriver probably had existed in the Early Mesozoic and fed the basins in Korea, South China and West China. </p
    corecore