17 research outputs found

    Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines

    Get PDF
    HIV-1-infected people who take drugs that suppress viremia to undetectable levels are protected from developing AIDS. Nonetheless, these individuals have chronic inflammation associated with heightened risk of cardiovascular pathology. HIV-1 establishes proviruses in long-lived CD4+ memory T cells, and perhaps other cell types, that preclude elimination of the virus even after years of continuous antiviral therapy. Though the majority of proviruses that persist during antiviral therapy are defective for production of infectious virions, many are expressed, raising the possibility that the HIV-1 provirus or its transcripts contribute to ongoing inflammation. Here we found that the HIV-1 provirus activated innate immune signaling in isolated dendritic cells, macrophages, and CD4+ T cells. Immune activation required transcription from the HIV-1 provirus and expression of CRM1-dependent, Rev-dependent, RRE-containing, unspliced HIV-1 RNA. If rev was provided in trans, all HIV-1 coding sequences were dispensable for activation except those cis-acting sequences required for replication or splicing. These results indicate that the complex, post-transcriptional regulation intrinsic to HIV-1 RNA is detected by the innate immune system as a danger signal, and that drugs which disrupt HIV-1 transcription or HIV-1 RNA metabolism would add qualitative benefit to current antiviral drug regimens

    Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects cells through binding to angiotensin-converting enzyme 2 (ACE2). This interaction is mediated by the receptor-binding domain (RBD) of the viral spike (S) glycoprotein. Structural and dynamic data have shown that S can adopt multiple conformations, which controls the exposure of the ACE2-binding site in the RBD. Here, using single-molecule Forster resonance energy transfer (smFRET) imaging, we report the effects of ACE2 and antibody binding on the conformational dynamics of S from the Wuhan-1 strain and in the presence of the D614G mutation. We find that D614G modulates the energetics of the RBD position in a manner similar to ACE2 binding. We also find that antibodies that target diverse epitopes, including those distal to the RBD, stabilize the RBD in a position competent for ACE2 binding. Parallel solution-based binding experiments using fluorescence correlation spectroscopy (FCS) indicate antibody-mediated enhancement of ACE2 binding. These findings inform on novel strategies for therapeutic antibody cocktails

    Primate immunodeficiency virus Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex [preprint]

    Get PDF
    Drugs that inhibit HIV-1 replication and prevent progression to AIDS do not eliminate HIV-1 proviruses from the chromosomes of long-lived CD4+ memory T cells. To escape eradication by these antiviral drugs, or by the host immune system, HIV-1 exploits poorly defined host factors that silence provirus transcription. These same factors, though, must be overcome by all retroviruses, including HIV-1 and other primate immunodeficiency viruses, in order to activate provirus transcription and produce new virus. Here we show that Vpx and Vpr, proteins from a wide range of primate immunodeficiency viruses, activate provirus transcription in human CD4+ T cells. Provirus activation required the DCAF1 adaptor that links Vpx and Vpr to the CUL4A/B ubiquitin ligase complex, but did not require degradation of SAMHD1, a well-characterized target of Vpx and Vpr. A loss-of-function screen for transcription silencing factors that mimic the effect of Vpx on provirus silencing identified all components of the Human Silencing Hub (HUSH) complex, FAM208A (TASOR/RAP140), MPHOSPH8 (MPP8), PPHLN1 (PERIPHILIN), and MORC2. Vpx associated with the HUSH complex components and decreased steady-state levels of these proteins in a DCAF-dependent manner. Finally, vpx and FAM208A knockdown accelerated HIV-1 and SIVMAC replication kinetics in CD4+ T cells to a similar extent, and HIV-2 replication required either vpx or FAM208A disruption. These results demonstrate that the HUSH complex restricts transcription of primate immunodeficiency viruses and thereby contributes to provirus latency. To counteract this restriction and activate provirus expression, primate immunodeficiency viruses encode Vpx and Vpr proteins that degrade HUSH complex components

    SARS-CoV-2 Spike protein variant D614G increases infectivity and retains sensitivity to antibodies that target the receptor binding domain [preprint]

    Get PDF
    Virus genome sequence variants that appear over the course of an outbreak can be exploited to map the trajectory of the virus from one susceptible host to another. While such variants are usually of no functional significance, in some cases they may allow the virus to transmit faster, change disease severity, or confer resistance to antiviral therapies. Since the discovery of SARS-CoV-2 as the cause of COVID-19, the virus has spread around the globe, and thousands of SARS-CoV-2 genomes have been sequenced. The rate of sequence variation among SARS-CoV-2 isolates is modest for an RNA virus but the enormous number of human-to-human transmission events has provided abundant opportunity for selection of sequence variants. Among these, the SARS-CoV-2 Spike protein variant, D614G, was not present in the presumptive common ancestor of this zoonotic virus, but was first detected in late January in Germany and China. The D614G variant steadily increased in frequency and now constitutes \u3e97% of isolates world-wide, raising the question whether D614G confers a replication advantage to SARS-CoV-2. Structural models predict that D614G would disrupt contacts between the S1 and S2 domains of the Spike protein and cause significant shifts in conformation. Using single-cycle vectors we showed that D614G is three to nine-fold more infectious than the ancestral form on human lung and colon cell lines, as well as on other human cell lines rendered permissive by ectopic expression of human ACE2 and TMPRSS2, or by ACE2 orthologues from pangolin, pig, dog, or cat. Nonetheless, monoclonal antibodies targeting the receptor binding domain of the SARS-CoV-2 Spike protein retain full neutralization potency. These results suggest that D614G was selected for increased human-to-human transmission, that it contributed to the rapidity of SARS-CoV-2 spread around the world, and that it does not confer resistance to antiviral therapies targeting the receptor binding domain

    Cutting Edge:Commensal Microbiota Has Disparate Effects on Manifestations of Polyglandular Autoimmune Inflammation

    No full text
    Polyglandular autoimmune inflammation accompanies Type 1 diabetes (T1D) in NOD mice affecting organs like thyroid and salivary glands. Whereas commensals are not required for T1D progression, germ-free (GF) mice had a very low degree of sialitis, which was restored by colonization with select microbial lineages. Moreover, unlike T1D, which is blocked in mice lacking MyD88-signaling adaptor under conventional but not under GF housing conditions, sialitis did not develop in MyD88-negative GF mice. Thus, microbes and MyD88-dependent signaling are critically required for sialitis development. The severity of sialitis did not correlate with the degree of insulitis in the same animal, was less sensitive to T1D-reducing diet, but was similar to T1D in microbiota-dependent sexual dimorphism. The unexpected distinction in requirements for the microbiota for different autoimmune pathologies within the same organism is crucial for understanding the nature of microbial involvement in complex autoimmune disorders including human autoimmune polyglandular syndromes

    Innate immune sensing of retroviral infection via Toll-like receptor 7 occurs upon viral entry.

    Full text link
    Innate immune sensors are required for induction of pathogen-specific immune responses. Retroviruses are notorious for their ability to evade immune defenses and establish long-term persistence in susceptible hosts. However, some infected animals are able to develop efficient virus-specific immune responses, and thus can be employed for identification of critical innate virus-sensing mechanisms. With mice from two inbred strains that control retroviruses via adaptive immune mechanisms, we found that of all steps in viral replication, the ability to enter the host cell was sufficient to induce antivirus humoral immune responses. Virus sensing occurred in endosomes via a MyD88-Toll-like receptor 7-dependent mechanism and stimulated virus-neutralizing immunity independently of type I interferons. Thus, efficient adaptive immunity to retroviruses is induced in vivo by innate sensing of the early stages of retroviral infection.http://deepblue.lib.umich.edu/bitstream/2027.42/177164/2/nihms-425326.pdfPublished versionDescription of nihms-425326.pdf : Published versio

    Replication of Beta- and Gammaretroviruses Is Restricted in I/LnJ Mice via the Same Genetic Mechanism▿

    No full text
    Mice of the I/LnJ inbred strain are unique in their ability to mount a robust and sustained humoral immune response capable of neutralizing infection with a betaretrovirus, mouse mammary tumor virus (MMTV). Virus-neutralizing antibodies (Abs) coat MMTV virions secreted by infected cells, preventing virus spread and hence the formation of mammary tumors. To investigate whether I/LnJ mice resist infection with other retroviruses besides MMTV, the animals were infected with murine leukemia virus (MuLV), a gammaretrovirus. MuLV-infected I/LnJ mice produced virus-neutralizing Abs that block virus transmission and virally induced disease. Generation of virus-neutralizing Abs required gamma interferon but was independent of interleukin-12. This unique mechanism of retrovirus resistance is governed by a single recessive gene, virus infectivity controller 1 (vic1), mapped to chromosome 17. In addition to controlling the antivirus humoral immune response, vic1 is also required for an antiviral cytotoxic response. Both types of responses were maintained in mice of the susceptible genetic background but congenic for the I/LnJ vic1 locus. Although the vic1-mediated resistance to MuLV resembles the mechanism of retroviral recovery controlled by the resistance to Friend virus 3 (rfv3) gene, the rfv3 gene has been mapped to chromosome 15 and confers resistance to MuLV but not to MMTV. Thus, we have identified a unique virus resistance mechanism that controls immunity against two distinct retroviruses
    corecore