37 research outputs found
Thermal stability of water-in-oil microemulsions containing solubilized nutritional protein gelatin
To develop new food and pharma technologies, various combinations of encapsulation and delivery of biological macromolecules are used. Proteins, polysaccharides, fats and lipids must be conveyed inside living organism, protecting them during the stages of storage and preparation from exposure of aggressive external environment. Some of the most common food protein compositions are various gels and emulsions. In the present study, we focused our attention on the influence of protein molecules on the properties and dynamical stability of water-inoil microemulsion. Microemulsions, the oil dispersion of surfactant-based reverse micelles, each carrying nanosized water core with embedded protein. We studied the result of protein encapsulation in the water core of surfactant reverse micelles, namely, the fish and mammalian gelatin. The method of electric conductivity was explored to detect the properties of reverse micelles as containers for food proteins. We have shown that a rather high protein content does not destroy microemulsion structure, which retain reverse micelles, though the properties of the system undergo definite alterations, in particular, it substantively lost thermal stability accelerating exchange processes between reverse micelles at lower temperatures which have to be taken into account in nutritional and pharmacy objectives
Dynamics and thermodynamic properties of CXCL7 chemokine
Chemokines form a family of signaling proteins mainly responsible for directing the traffic of leukocytes, where their biological activity can be modulated by their oligomerization state. We characterize the dynamics and thermodynamic stability of monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines, using experimental methods that include circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, and computational methods that include the anisotropic network model (ANM), molecular dynamics (MD) simulations and the distance constraint model (DCM). A consistent picture emerges for the effects of dimerization and Cys5-Cys31 and Cys7-Cys47 disulfide bonds formation. The presence of disulfide bonds is not critical for maintaining structural stability in the monomer or dimer, but the monomer is destabilized more than the dimer upon removal of disulfide bonds. Disulfide bonds play a key role in shaping the characteristics of native state dy
Interaction-Induced Structural Transformations in Polysaccharide and Protein-Polysaccharide Gels as Functional Basis for Novel Soft-Matter: A Case of Carrageenans
Biocompatible, nontoxic, and biodegradable polysaccharides are considered as a promising base for bio-inspired materials, applicable as scaffolds in regenerative medicine, coatings in drug delivery systems, etc. The tunable macroscopic properties of gels should meet case-dependent requirements. The admixture of proteins to polysaccharides and their coupling in more sophisticated structures opens an avenue for gel property tuning via physical cross-linking of components and the modification of gel network structure. In this review recent success in the conformational studies of binary protein–polysaccharide gels is summarized with the main focus upon carrageenans. Future perspectives and challenges in rational design of novel polysaccharide-based materials are outlined
Recent Advances in Protein–Protein Interactions
Protein-protein interactions (PPIs) lead to formation of complexes and aggregates between a pair or multiple protein molecules [...
Regulation of Intersubunit Interactions in Homotetramer of Glyceraldehyde-3-Phosphate Dehydrogenases upon Its Immobilization in Protein—Kappa-Carrageenan Gels
Polysaccharides, being biocompatible and biodegradable polymers, are highly attractive as materials for protein delivery systems. However, protein–polysaccharide interactions may lead to protein structural transformation. In the current study, we analyze the structural adjustment of a homotetrameric protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), upon its interactions with both flexible coil chain and the rigid helix of κ-carrageenan. FTIR spectroscopy was used to probe the secondary structures of both protein and polysaccharide. Electrostatically driven protein–polysaccharide interactions in dilute solutions resulted in an insoluble complex formation with a constant κ-carrageenan/GAPDH ratio of 0.2, which amounts to 75 disaccharide units per mole of protein tetramer. Upon interactions with both coiled and helical polysaccharides, a weakening of the intersubunit interactions was revealed and attributed to a partial GAPDH tetramer dissociation. In turn, protein distorted the helical conformation of κ-carrageenan when co-gelled. Molecular modeling showed the energy favorable interactions between κ-carrageenan and GAPDH at different levels of oligomerization. κ-Carrageenan binds in the region of the NAD-binding groove and the S-loop in OR contact, which may stabilize the OP dimers. The obtained results highlight the mutual conformational adjustment of oligomeric GAPDH and κ-carrageenan upon interaction and the stabilization of GAPDH’s dissociated forms upon immobilization in polysaccharide gels
Dynamics and thermodynamic properties of CXCL7 chemokine
Chemokines form a family of signaling proteins mainly responsible for directing the traffic of leukocytes, where their biological activity can be modulated by their oligomerization state. We characterize the dynamics and thermodynamic stability of monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines, using experimental methods that include circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, and computational methods that include the anisotropic network model (ANM), molecular dynamics (MD) simulations and the distance constraint model (DCM). A consistent picture emerges for the effects of dimerization and Cys5-Cys31 and Cys7-Cys47 disulfide bonds formation. The presence of disulfide bonds is not critical for maintaining structural stability in the monomer or dimer, but the monomer is destabilized more than the dimer upon removal of disulfide bonds. Disulfide bonds play a key role in shaping the characteristics of native state dy
Hydration of AMP and ATP Molecules in Aqueous Solution and Solid Films
Water enables life and plays a critical role in biology. Considered as a versatile and adaptive component of the cell, water engages a wide range of biomolecular interactions. An organism can exist and function only if its self-assembled molecular structures are hydrated. It was shown recently that switching of AMP/ATP binding to the insulin-independent glucose transporter Human Erythrocyte Glucose Transport Protein (GLUT1) may greatly influence the ratio of bulk and bound water during regulation of glucose uptake by red blood cells. In this paper, we present the results on the hydration properties of AMP/ATP obtained by means of dielectric spectroscopy in aqueous solution and for fully ionized forms in solid amorphous films with the help of gravimetric studies
Effect of Protein–protein Interactions on Translational Diffusion of Spheroidal Proteins
One of the commonly accepted approaches to estimate protein–protein interactions (PPI) in aqueous solutions is the analysis of their translational diffusion. The present review article observes a phenomenological approach to analyze PPI effects via concentration dependencies of self- and collective translational diffusion coefficient for several spheroidal proteins derived from the pulsed field gradient NMR (PFG NMR) and dynamic light scattering (DLS), respectively. These proteins are rigid globular α-chymotrypsin (ChTr) and human serum albumin (HSA), and partly disordered α-casein (α-CN) and β-lactoglobulin (β-Lg). The PPI analysis enabled us to reveal the dominance of intermolecular repulsion at low ionic strength of solution (0.003–0.01 M) for all studied proteins. The increase in the ionic strength to 0.1–1.0 M leads to the screening of protein charges, resulting in the decrease of the protein electrostatic potential. The increase of the van der Waals potential for ChTr and α-CN characterizes their propensity towards unstable weak attractive interactions. The decrease of van der Waals interactions for β-Lg is probably associated with the formation of stable oligomers by this protein. The PPI, estimated with the help of interaction potential and idealized spherical molecular geometry, are in good agreement with experimental data
Fibrin-Rhamnogalacturonan I Composite Gel for Therapeutic Enzyme Delivery to Intestinal Tumors
Therapy of colorectal cancer with protein drugs, including targeted therapy using monoclonal antibodies, requires the preservation of the drug’s structure and activity in the gastrointestinal tract or bloodstream. Here, we confirmed experimentally the fundamental possibility of creating composite protein–polysaccharide hydrogels based on non-degrading rhamnogalacturonan I (RG) and fibrin as a delivery vehicle for antitumor RNase binase. The method is based on enzymatic polymerization of fibrin in the presence of RG with the inclusion of liposomes, containing an encapsulated enzyme drug, into the gel network. The proposed method for fabricating a gel matrix does not require the use of cytotoxic chemical cross-linking agents and divalent cations, and contains completely biocompatible and biodegradable components. The process proceeds under physiological conditions, excluding the effect of high temperatures, organic solvents and ultrasound on protein components. Immobilization of therapeutic enzyme binase in the carrier matrix by encapsulating it in liposomes made from uncharged lipid made it possible to achieve its prolonged release with preservation of activity for a long time. The release time of binase from the composite carrier can be regulated by variation of the fibrin and RG concentration