6 research outputs found

    Subadditive responses to extremely short blue and green pulsed light on visual evoked potentials, pupillary constriction and electroretinograms

    No full text
    Abstract Background The simultaneous exposure to blue and green light was reported to result in less melatonin suppression than monochromatic exposure to blue or green light. Here, we conducted an experiment using extremely short blue- and green-pulsed light to examine their visual and nonvisual effects on visual evoked potentials (VEPs), pupillary constriction, electroretinograms (ERGs), and subjective evaluations. Methods Twelve adult male subjects were exposed to three light conditions: blue-pulsed light (2.5-ms pulse width), green-pulsed light (2.5-ms pulse width), and simultaneous blue- and green-pulsed light with white background light. We measured the subject’s pupil diameter three times in each condition. Then, after 10 min of rest, the subject was exposed to the same three light conditions. We measured the averaged ERG and VEP during 210 pulsed-light exposures in each condition. We also determined subjective evaluations using a visual analog scale (VAS) method. Results The pupillary constriction during the simultaneous exposure to blue- and green-pulsed light was significantly lower than that during the blue-pulsed light exposure despite the double irradiance intensity of the combination. We also found that the b/|a| wave of the ERGs during the simultaneous exposure to blue- and green-pulsed light was lower than that during the blue-pulsed light exposure. We confirmed the subadditive response to pulsed light on pupillary constriction and ERG. However, the P100 of the VEPs during the blue-pulsed light were smaller than those during the simultaneous blue- and green-pulsed light and green-pulsed light, indicating that the P100 amplitude might depend on the luminance of light. Conclusions Our findings demonstrated the effect of the subadditive response to extremely short pulsed light on pupillary constriction and ERG responses. The effects on ipRGCs by the blue-pulsed light exposure are apparently reduced by the simultaneous irradiation of green light. The blue versus yellow (b/y) bipolar cells in the retina might be responsible for this phenomenon

    Effect of quantity and intensity of pulsed light on human non-visual physiological responses

    No full text
    Abstract Background Exposure to pulsed light results in non-visual physiological responses in humans. The present study aims to investigate whether such non-visual effects are influenced to a greater extent by the intensity of lighting or by the power (quantity) of lighting. Methods >Twelve healthy young male participants (23 ± 0.3 years, 21–24 age range) were recruited for the present study. Participants were exposed to light of varying levels of intensity and quantity whose frequency was held constant across the conditions, which consisted of exposure to blue (different intensity, constant quantity) and white (constant intensity, different quantity) LEDs. Pupillary constriction, electroencephalogram (EEG) alpha band ratio, subjective sleepiness, concentration and perception of blueness were measured. Results Pupillary constriction and subjective concentration were significantly greater under the high-intensity and short pulse width (HS) condition than under the low-intensity and long pulse width (LL) conditions at three time points during exposure to high-intensity light. However, no significant differences were observed among the results at the three time points during exposure to different quantities of pulsed light. Conclusions The results of the present study indicate that non-visual influences of pulsed light on physiological function are mainly determined not by the quantity but by the intensity of the emitted light, with relatively higher levels of intensity producing more significant physiological changes, suggesting potent excitation of intrinsically photosensitive retinal ganglion cells

    Additional file 1: of Effect of quantity and intensity of pulsed light on human non-visual physiological responses

    No full text
    Lighting spectral distribution data. Spectral distribution data for the blue LED, white LED, and incandescent bulbs. (XLSX 47 kb

    Additional file 2: of Effect of quantity and intensity of pulsed light on human non-visual physiological responses

    No full text
    Results data. Significant results for pupillary constriction, subjective blueness, and concentration date under the three lighting conditions. (XLSX 54 kb
    corecore