56 research outputs found

    Impact of Body Mass Index on Survival of Pancreatic Cancer Patients in Japan

    Get PDF
    The impact of body mass index (BMI) on postoperative survival in Japanese patients with pancreatic cancer is unclear. We examined the relationship between preoperative BMI and the prognosis of Japanese patients who underwent surgery for pancreatic cancer to determine whether BMI affects these patients’ prognosis. Of the patients who underwent pancreatectomy between January 2004 and August 2015 at our institution, 246 were pathologically diagnosed with pancreatic tubular adenocarcinoma; the cancer was located in the pancreatic head (n=161) and in the body and tail (n=85). We classified the patients by BMI: underweight (n=22), normal weight (n=190), and overweight/obese (n=34) groups. We retrospectively analyzed medical records for patient characteristics, lesion location, disease stage, postoperative complications, chemotherapy, and prognosis. Lesion location, disease stage, postoperative complications, and chemotherapy were not significantly different among the BMI groups. The median survival times were as follows (days): all patients, 686; underweight, 485; normal weight, 694; and overweight/obese, 839. In a multivariate analysis, after adjusting for competing risk factors, low BMI was associated with an increased risk of death (normal weight: HR 0.58, p=0.038; overweight/obese: HR 0.54, p=0.059). High BMI was not found to be a postoperative factor for poor prognosis in Japanese pancreatic cancer patients

    Tryptophan and Kynurenine Enhances the Stemness and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro and In Vivo

    Get PDF
    Aging tissues present a progressive decline in homeostasis and regenerative capacities, which has been associated with degenerative changes in tissue-specific stem cells and stem cell niches. We hypothesized that amino acids could regulate the stem cell phenotype and differentiation ability of human bone marrow-derived mesenchymal stromal cells (hBMSCs). Thus, we performed a screening of 22 standard amino acids and found that D-tryptophan (10 mu M) increased the number of cells positive for the early stem cell marker SSEA-4, and the gene expression levels of OCT-4, NANOG, and SOX-2 in hBMSCs. Comparison between D- and L-tryptophan isomers showed that the latter presents a stronger effect in inducing the mRNA levels of Oct-4 and Nanog, and in increasing the osteogenic differentiation of hBMSCs. On the other hand, L-tryptophan suppressed adipogenesis. The migration and colony-forming ability of hBMSCs were also enhanced by L-tryptophan treatment. In vivo experiments delivering L-tryptophan (50 mg/kg/day) by intraperitoneal injections for three weeks confirmed that L-tryptophan significantly increased the percentage of cells positive for SSEA-4, mRNA levels of Nanog and Oct-4, and the migration and colony-forming ability of mouse BMSCs. L-kynurenine, a major metabolite of L-tryptophan, also induced similar effects of L-tryptophan in enhancing stemness and osteogenic differentiation of BMSCs in vitro and in vivo, possibly indicating the involvement of the kynurenine pathway as the downstream signaling of L-tryptophan. Finally, since BMSCs migrate to the wound healing site to promote bone healing, surgical defects of 1 mm in diameter were created in mouse femur to evaluate bone formation after two weeks of L-tryptophan or L-kynurenine injection. Both L-tryptophan and L-kynurenine accelerated bone healing compared to the PBS-injected control group. In summary, L-tryptophan enhanced the stemness and osteoblastic differentiation of BMSCs and may be used as an essential factor to maintain the stem cell properties and accelerate bone healing and/or prevent bone loss

    DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme

    Get PDF
    To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction

    Insights into the Molecular Evolution of the PDZ/LIM Family and Identification of a Novel Conserved Protein Motif

    Get PDF
    The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call ‘ALP-like motif’ (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family

    Book-Talk: An Activity to Motivate Learners to Read Autonomously in a Foreign Language

    No full text
    In the last decade, extensive reading (ER) had been incorporated into English as a foreign language (EFL) education in various Japanese institutions. It restored the once broken balance of accuracy and fluency in traditional English education, and assisted reluctant EFL learners to start reading. However, ER required rather longer term for elementary learners to enjoy its benefits and the learners needed an extra encouragement to continue ER for the longer term. Book-talk was such an activity to encourage learners to read voluntary and to improve their language skills additionally. In a book-talk, several learners sat around a table, introduced the books they had read during the week, and accepted questions and comments from the others in turn. It also fitted well in lessons because 3-minute talks and 2-minute Q&A of six members took only 30 minutes. We will report how the activity motivated elder students, who had three or more years’ experience of ER, to continue their reading outside the class, and how it encouraged autonomous ER of adult EFL learners, who were reading English books borrowing from the college library. A combination of few talks and many readings worked well in EFL settings

    Deodorant Activity of Black Cumin Seed Essential Oil against Garlic Organosulfur Compound

    No full text
    The deodorant activity of black cumin (Nigella sativa L.) seed, a spice used to flavor curry and vegetable foods in Southwest Asia, against garlic (Allium sativum L.) organosulfur compounds related to human malodor was evaluated. Black cumin seed essential oil showed remarkable deodorant activity against garlic essential oil. The mode of action of this deodorant activity was presumed to be that black cumin seed essential oil covalently reacted with the organosulfur compounds in garlic. Therefore, thymoquinone, which is a major constituent in black cumin seed essential oil, and allyl mercaptan, which is one of the organosulfur compounds produced by cutting garlic, were reacted in vitro, and the products were purified and elucidated using spectroscopic data. As a result, these substances were identified as different allyl mercaptan adducts to dihydrothymoquinone. This chemical reaction was presumed to play a key role in the deodorant activity of black cumin seed essential oil

    A novel mutation of WFS1 gene in a Japanese man of Wolfram syndrome with positive diabetes-related antibodies

    Get PDF
    Wolfram syndrome is a rare, autosomal recessive disorder characterized by early-onset diabetes mellitus, optic atrophy and neurological and endocrinological abnormalities. A 47-year-old Japanese man with frequent severe hypoglycemic episodes was diagnosed as Wolfram syndrome based on clinical features and laboratory data. He had positive glutamic acid decarboxylase (GAD) and insulinoma-associated antigen-2 (IA-2) antibodies, both uncommon in this syndrome. Genetic analysis revealed that WFS1 gene of the patient has a homozygous 5 base pairs (AAGGC) insertion at position 1279 in exon 8, causing a frameshift at codon 371 leading to premature termination at codon 443
    corecore