104 research outputs found

    The mysterious orphans of Mycoplasmataceae

    Full text link
    Background: The length of a protein sequence is largely determined by its function, i.e. each functional group is associated with an optimal size. However, comparative genomics revealed that proteins length may be affected by additional factors. In 2002 it was shown that in bacterium Escherichia coli and the archaeon Archaeoglobus fulgidus, protein sequences with no homologs are, on average, shorter than those with homologs. Most experts now agree that the length distributions are distinctly different between protein sequences with and without homologs in bacterial and archaeal genomes. In this study, we examine this postulate by a comprehensive analysis of all annotated prokaryotic genomes and focusing on certain exceptions. Results: We compared lengths distributions of having homologs proteins (HHPs) and non-having homologs proteins (orphans or ORFans) in all currently annotated completely sequenced prokaryotic genomes. As expected, the HHPs and ORFans have strikingly different length distributions in almost all genomes. As previously established, the HHPs, indeed, are, on average, longer than the ORFans, and the length distributions for the ORFans have a relatively narrow peak, in contrast to the HHPs, whose lengths spread over a wider range of values. However, about thirty genomes do not obey these rules. Practically all genomes of Mycoplasma and Ureaplasma have atypical ORFans distributions, with the mean lengths of ORFan larger than the mean lengths of HHPs. These genera constitute over 80% of atypical genomes. Conclusions: We confirmed on a ubiquitous set of genomes the previous observation that HHPs and ORFans have different gene length distributions. We also showed that Mycoplasmataceae genomes have distinctive distributions of ORFans lengths. We offer several possible biological explanations of this phenomenon

    Transcriptional networks in plasmacytoid dendritic cells stimulated with synthetic TLR 7 agonists

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasmacytoid Dendritic Cells (pDC) comprise approximately 0.2 to 0.8% of the blood mononuclear cells and are the primary type 1 interferon (IFN), producing cells, secreting high levels of IFN in response to viral infections. Plasmacytoid dendritic cells express predominantly TLRs 7 & 9, making them responsive to ssRNA and CpG DNA. The objective of this study was to evaluate the molecular and cellular processes altered upon stimulation of pDC with synthetic TLR 7 and TLR 7/8 agonists. To this end, we evaluated changes in global gene expression upon stimulation of 99.9% pure human pDC with the TLR7 selective agonists 3M-852A, and the TLR7/8 agonist 3M-011.</p> <p>Results</p> <p>Global gene expression was evaluated using the Affymetrix U133A GeneChip<sup>® </sup>and selected genes were confirmed using real time TaqMan<sup>® </sup>RTPCR. The gene expression profiles of the two agonists were similar indicating that changes in gene expression were solely due to stimulation through TLR7. Type 1 interferons were among the highest induced genes and included IFNB and multiple IFNα subtypes, IFNα2, α5, α6, α8, α1/13, α10, α14, α16, α17, α21. A large number of chemokines and co-stimulatory molecules as well as the chemokine receptor CCR7 were increased in expression indicating maturation and change in the migratory ability of pDC. Induction of an antiviral state was shown by the expression of several IFN-inducible genes with known anti-viral activity. Further analysis of the data using the pathway analysis tool MetaCore gave insight into molecular and cellular processes impacted. The analysis revealed transcription networks that show increased expression of signaling components in TLR7 and TLR3 pathways, and the cytosolic anti-viral pathway regulated by RIG1 and MDA5, suggestive of optimization of an antiviral state targeted towards RNA viruses. The analysis also revealed increased expression of a network of genes important for protein ISGylation as well as an anti-apoptotic and pro-survival gene expression program.</p> <p>Conclusion</p> <p>Thus this study demonstrates that as early as 4 hr post stimulation, synthetic TLR7 agonists induce a complex transcription network responsible for activating pDC for innate anti-viral immune responses with optimized responses towards RNA viruses, increased co-stimulatory capacity, and increased survival.</p

    Identifying disease-specific genes based on their topological significance in protein networks

    Get PDF
    BACKGROUND: The identification of key target nodes within complex molecular networks remains a common objective in scientific research. The results of pathway analyses are usually sets of fairly complex networks or functional processes that are deemed relevant to the condition represented by the molecular profile. To be useful in a research or clinical laboratory, the results need to be translated to the level of testable hypotheses about individual genes and proteins within the condition of interest. RESULTS: In this paper we describe novel computational methodology capable of predicting key regulatory genes and proteins in disease- and condition-specific biological networks. The algorithm builds shortest path network connecting condition-specific genes (e.g. differentially expressed genes) using global database of protein interactions from MetaCore. We evaluate the number of all paths traversing each node in the shortest path network in relation to the total number of paths going via the same node in the global network. Using these numbers and the relative size of the initial data set, we determine the statistical significance of the network connectivity provided through each node. We applied this method to gene expression data from psoriasis patients and identified many confirmed biological targets of psoriasis and suggested several new targets. Using predicted regulatory nodes we were able to reconstruct disease pathways that are in excellent agreement with the current knowledge on the pathogenesis of psoriasis. CONCLUSION: The systematic and automated approach described in this paper is readily applicable to uncovering high-quality therapeutic targets, and holds great promise for developing network-based combinational treatment strategies for a wide range of diseases

    Fasting induces a biphasic adaptive metabolic response in murine small intestine

    Get PDF
    BACKGROUND: The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. RESULTS: Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. CONCLUSION: The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnove

    The transcriptomic signature of fasting murine liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The contribution of individual organs to the whole-body adaptive response to fasting has not been established. Hence, gene-expression profiling, pathway, network and gene-set enrichment analysis and immunohistochemistry were carried out on mouse liver after 0, 12, 24 and 72 hours of fasting.</p> <p>Results</p> <p>Liver wet weight had declined ~44, ~5, ~11 and ~10% per day after 12, 24, 48 and 72 hours of fasting, respectively. Liver structure and metabolic zonation were preserved. Supervised hierarchical clustering showed separation between the fed, 12–24 h-fasted and 72 h-fasted conditions. Expression profiling and pathway analysis revealed that genes involved in amino-acid, lipid, carbohydrate and energy metabolism responded most significantly to fasting, that the response peaked at 24 hours, and had largely abated by 72 hours. The strong induction of the urea cycle, in combination with increased expression of enzymes of the tricarboxylic-acid cycle and oxidative phosphorylation, indicated a strong stimulation of amino-acid oxidation peaking at 24 hours. At this time point, fatty-acid oxidation and ketone-body formation were also induced. The induction of genes involved in the unfolded-protein response underscored the cell stress due to enhanced energy metabolism. The continuous high expression of enzymes of the urea cycle, malate-aspartate shuttle, and the gluconeogenic enzyme Pepck and the re-appearance of glycogen in the pericentral hepatocytes indicate that amino-acid oxidation yields to glucose and glycogen synthesis during prolonged fasting.</p> <p>Conclusion</p> <p>The changes in liver gene expression during fasting indicate that, in the mouse, energy production predominates during early fasting and that glucose production and glycogen synthesis become predominant during prolonged fasting.</p
    • …
    corecore