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1. Introduction 

Psoriasis (a skin disease) and Crohn’s disease (a disease of the intestinal epithelium) are 
multifactorial diseases caused by abnormalities in genetic machinery regulation. Both 
pathologies disturb the immune system, and the pathological processes are triggered by 
environmental factors. In the case of psoriasis, these factors are psychoemotional stresses, 
infections (group A streptococci and Staphylococcus aureus), drugs (lithium-containing, 
antimalarial, and antituberculous agents and Novocain), smoking, and mechanical damages 
(the so-called Koebner phenomenon) [Bowcock A et al., 2004]. Psoriasis vulgaris is one of 
the most prevalent chronic inflammatory skin diseases affecting approximately 2% of 
individuals in Western societies, and found worldwide in all populations. Psoriasis is a 
complex disease affecting cellular, gene and protein levels and presented as skin lesions. The 
skin lesions are characterized by abnormal keratinocyte differentiation, hyperproliferation 
of keratinocytes, and infiltration of inflammatory cells [Boehncke WH et al. 1996; Ortonne 
JP, 1996]. The factors triggering Crohn’s disease include psychoemotional stresses, infections 
(Mycobacterium avium ssp. paratuberculosis and invasive Escherichia coli variants), drugs 
(antibiotics and nonsteroid antiimflammatory agents), smoking, and nutritional regimen 
[Sartor R., 2006]. Crohn’s disease known only since the 1920s [Crohn B et al., 1932] and now 
affecting up to 0.15% of the northwest European and North American population [Binder 
V., 2005].  
Both psoriasis and Crohn’s disease are now regarded as incurable, and the goal of their 
therapy is to extend the remission periods and decrease the severity of the disease. These 
two diseases are tightly related at the genetic level, as over five genetic loci are involved in 
the development of both psoriasis and Crohn’s disease.  
The mechanisms of both psoriasis and Crohn’s disease are complex and involve genetic and 
environmental factors. As we gain more knowledge about molecular pathways implicated 
in diseases, novel therapies emerge (such as etanercept and infliximab that target TNF-α or 
CD11a- mediated pathways [Pastore S et al., 2008; Gisondi P et al., 2007]).  
We have studied earlier the components of AP-1 transcription factor as psoriasis candidate 
genes. This study was performed by bioinformatics analysis of the transcription data using 
the GEO DataSets database (http://www.ncbi.nlm.nih.gov/geo/) [Piruzian ES et al., 2007]. 
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The same approach was used by other researchers to detect potential therapeutic targets for 
psoriasis [Yao Y., et al., 2008]. In next step, we performed a comparative analysis of the 
molecular processes involved in the pathogenesis of two diseases, psoriasis and Crohn’s 
disease [Piruzian ES et al., 2009].  
Despite the fact that psoriasis and Crohn`s disease affect completely different body systems 
(skin and intestine), they are much more similar that it may seem at first glance. Both skin 
and intestinal epithelium are barrier organs, that are the first to resist the environmental 
factors, including microorganisms. Both pathologies are immune-mediated inflammatory 
diseases, that is also marked by the same drug therapies. Finally, they have a lot of common 
susceptibility loci (Fig. 1). 
 

 

Fig. 1. Localization of various linkage regions for barrier diseases on human chromosomes 
map [Schreiber S et al., 2005])  

In recent years, microarray mRNA expression profiling [Oestreicher JL et al., 2001; Bowcock 
AM et al., 2001; Zhou X et al., 2003; Quekenborn-Trinquet V et al., 2005] of lesional psoriatic 
skin revealed over 1,300 differentially expressed genes. Enrichment analysis (EA) showed 
that these genes encode proteins involved in regeneration, hyperkeratosis, metabolic 
function, immune response, and inflammation and revealed a number of modulating 
signaling pathways. These efforts may help to develop new-generation drugs. However, 
enrichment analysis limits our understanding of altered molecular interactions in psoriasis 
as it provides a relative ranking based on ontology terms resulting in the representation of 
fragmented and disconnected perturbed pathways. Furthermore, analysis of gene 
expression alone is not sufficient for understanding the whole variety of pathological 
changes at different levels of cellular organization. Indeed, new methodologies have been 
applied to the analysis of OMICs data in complex diseases that include algorithm-based 
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biological network analysis [Nikolskaya T, et al., 2009; Nikolsky Y et al., 2005; Bhavnani SK 
et al., 2009; Ideker T et al., 2008; Chuang HY et al., 2007] and meta-analysis of multiple 
datasets of different types [Cox B et al., 2005; Wise LH et al., 1999; Ghosh D et al., 2003; 
Warnat P et al., 2005; Hack CJ, 2004; Menezes R et al., 2009]. Here, we applied several 
techniques of network and meta-analysis to reveal the similarities and differences between 
transcriptomics- and proteomics-level perturbations in psoriasis lesions. We particularly 
focused on revealing novel regulatory pathways playing a role in psoriasis development 
and progression.  

2. Transcriptomic and proteomic data, network analysis  

Data preparation. The data deposited with the public database of microarray experiments, 

GEO (http://www.ncbi.nlm.nih.gov/geo/), were analyzed. The expression data on 

psoriasis were contained in entry GDS1391, and on Crohn’s disease, in entry GDS1330. Since 

these data were obtained using different microarrays and experimental schemes, analysis 

was individually performed for each disease with subsequent comparison of the lists of 

genes with altered expression for each case.  

Two sets were selected from the overall data on psoriasis, namely, four experiments with 

gene expression in psoriatic skin lesions, and four, with gene expression in the healthy skin 

of the same patients. The selected data for Crohn’s disease were also represented by two 

sets: 10 experiments on expression in intestinal epithelial lesions, and 11, on expression in 

the intestinal tissue of healthy individuals. The data were prepared for analysis using the 

GeneSpring GX (http://www.chem.agilent.com/scripts/pds.asp?lpage=27881) software 

package. This processing comprised discarding of the genes with poorly detectable 

expression and normalization of the remaining data. In addition to the values of expression, 

the so-called absent call flags were added for psoriasis cases; these flags characterize the 

significance of the difference in expression of a particular gene from the background noise. 

The genes displaying the flag value of A (i.e., absent, which means that the expression of a 

particular gene in experiment is undetectable) in over 50% of experiments were discarded 

from further analysis. This information was unavailable for Crohn’s disease; therefore, this 

step was omitted. The results were normalized by the median gene expression in the 

corresponding experiment to make them comparable with one another. 

Detection of the genes with altered expression. Differentially expressed genes were sought 

using Welch’s t-test [Welch B.L., 1947]. This test does not require that the distribution 

variances for the compared samples be equal; therefore, it is more convenient for analyzing 

expression data than a simple t-test. FDR algorithm [Benjamini Y et al., 1995] with a 

significance threshold of 0.1 was used to control the type I errors in finding differentially 

expressed genes; in this case, the threshold determined the expected rate of false positive 

predictions in the final set of genes after statistical control.  

Detection of common biological processes. The resulting gene lists were compared, and the 

molecular processes mediated by the genes displaying altered expressions in both diseases 

were sought using the MetaCore (GeneGo Inc., www.genego.com) program. The 

significance of the biological processes where the genes displaying altered expressions in 

both diseases was assessed according to the degree to which overlapping between the list of 

differentially expressed genes and the list of genes ascribed to the process exceeded random 

overlapping. Hypergeometric distribution [Draghici S et al., 2007] was used as a model of 
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random overlapping between the gene lists. The measure of signifi- cance for the input gene 

list, the p value, in this distribution is calculated as  
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where N is the number of genes in the MetaCore database; R, the number of genes ascribed 
to a particular process; n, the size of the input gene list; and r, the number of genes from the 
input list related to this process.  
Three ontologies of biological processes were used in this work: GO (www.gene-

ontology.org) and two ontologies included in the MetaCore, Canonical pathways and 

GeneGo process networks. The processes contained in the MetaCore ontologies are gene 

networks, which reflect the interaction of proteins involved in a particular biological 

regulatory or metabolic pathway. The processes for all three ontologies were prioritized by 

the negative logarithm of p value. 

The common molecular biological pathways were determined based on the analysis of 

significant biological processes and expressions of the genes involved in these processes. 

The MetaCore contains the algorithms providing for detection in the total network of gene 

interactions the particular regulatory pathways and subnetworks saturated with the objects 

of research interest, in this case, the genes with altered expression. The resulting 

assumptions on the pattern of common biological pathways were visualized as a gene 

network using the MetaCore.  

Skin biopsies. Acquisition of the human tissue was approved by the Vavilov Institute of 
General Genetics of Russian Academy of Sciences review board and the study was 
conducted after patient's consent and according to the Declaration of Helsinki Principles. A 
total of 6 paired nonlesional and lesional (all were plaque-type) skin biopsies from 3 
psoriatic patients were profiled using 2D electrophoresis. All the donors who gave biopsy 
tissue (both healthy controls and individuals with psoriasis) provided a written informed 
consent for the tissue to be taken and used in this study. Clinical data for all patients are 
listed in Table 3. Full-thickness punch biopsies were taken from uninvolved skin (at least 2 
cm distant from any psoriatic lesion; 6 mm diameter) and from the involved margin of a 
psoriatic plaque (6 mm diameter) from every patient. 
Sample preparation, two-dimensional electrophoresis, gel image analysis and 
massspectrometry was carried out using the standard procedure [Gravel P & Golaz O, 1996; 
Mortz E, et al., 2001].  
Microarray data analysis. We used recently published data set [Yao Y, et al., 2008] from 
GEO data base (http://www.ncbi.nlm.nih.gov/geo/; accession number GSE14095). We 
compared 28 pairs of samples (in each pair there was a sample of lesional skin and a sample 
of healthy skin from the same patient). Values for each sample were normalized by sample 
median value in order to unify distributions of expression signals. For assessment of 
differential expression we used paired Welch ttest with FDR correction [Benjamini Y et al., 
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1995]. Probe set was considered as differentially expressed if its average fold change 
exceeded 2.5 and FDR corrected p-value was less than 0.01. 
Overconnection analysis. All network-based analyses were conducted with MetaCore 

software suite http://www.genego.com. This software employs a dense and manually 

curated database of interactions between biological objects and variety of tools for 

functional analysis of high-throughput data. We defined a gene as overconnected with the 

gene set of interest if the corresponding node had more direct interactions with the nodes of 

interest than it would be expected by chance. Significance of overconnection was estimated 

using hypergeometric distribution with parameters r - number of interactions between 

examined node and the list of interest; R - degree of examined node, n - sum of interactions 

involving genes of interest and N - total number of interactions in the database: 
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Hidden nodes analysis. In addition to direct interacting objects, we also used objects that may 

not interact directly with objects of interest but are important upstream regulators of those 

[Dezso Z et al., 2009]. The approach is generally the same as described above, but the shortest 

paths instead of direct links are taken into account. As we were interested in transcriptional 

regulation, we defined a transcriptional activation shortest path as the preferred shortest path 

from any object in the MetaCore database to the transcription factor target object from the data 

set. We added an additional condition to include the uneven number of inhibiting interactions 

in the path (that's required for the path to have activating effect). If the number of such paths 

containing examined gene and leading to one of objects of interest were higher than expected 

by chance, this gene was considered as significant hidden regulator. The significance of a 

node's importance was estimated using hypergeometric distribution with parameters r - 

number of shortest paths between containing currently examined gene; R - total number of 

shortest paths leading to a gene of interest through transcriptional factor, n - total number of 

transcription activation shortest paths containing examined gene and N - total number of 

transcription activation shortest paths in the database. 

Rank aggregation. Both topology significance approaches produced lists of genes 

significantly linked to a gene or protein set of interest, ranked by corresponding p-values. 

To combine results of these two approaches, we used a weighted rank aggregation method 

described in [Pihur V et al., 2009]. Weighted Spearman distance was used as distance 

measure and the genetic algorithm was employed to select the optimal aggregated list of 

size 20. This part of work was accomplished in R 2.8.1 http://www.r-project.org.  

Network analysis. In addition to topology analysis, we examined overexpressed genes and 
proteins using various algorithms for selecting connected biologically meaningful 
subnetworks enriched with objects of interest. Significance of enrichment is estimated using 
hypergeometric distribution. We first used an algorithm intended to find regulatory pathways 
that are presumably activated under pathological conditions. It defines a set of transcription 
factors that are directly regulating genes of interest and a set of receptors whose ligands are in 
the list of interest and then constructs series of networks; one for each receptor. Each network 
contains all shortest paths from a receptor to the selected transcriptional factors and their 
targets. This approach allows us to reveal the most important areas of regulatory machinery 
affected under the investigated pathological condition. Networks are sorted by enrichment p-
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value. The second applied algorithm used was aimed to define the most influential 
transcription factors. It considers a transcriptional factor from the data base and gradually 
expands the subnetwork around it until it reaches a predefined threshold size (we used 
networks of 50 nodes). Networks are sorted by enrichment p-value. 

3. A comparative analysis of the molecular genetic processes in the 
pathogenesis of psoriasis and Crohn’s disease 

Constructing List of the Genes with Altered Expression in Both Pathologies We detected the 
lists of differentially expressed genes separately in each dataset and compared these lists at 
the system level. This approach to analysis was dictated by the properties of expression data 
in general (a high noise level and a large volume of analyzed data) and individual 
properties of datasets selected for analysis, which were obtained using different microarrays 
with different numbers of probes. That is why the datasets were incomparable in a direct 
fashion. The dataset on psoriasis initially contained information on the expression levels of 
12626 probes from eight experiments (four specimens of skin lesions, and four of the healthy 
skin from the same patients). After discarding the probes with poorly detectable expression 
(see Materials and Methods), the set was reduced to 5076 probes. The list of the probes with 
statistically significant differences in expression between the lesion and healthy tissue 
contained 410 items at a significance level of 0.1. 
The dataset on Crohn’s disease contained information on the expression level of 24016 
probes from 21 experiments (11 specimens of epithelial lesions and 10 specimens of healthy 
epithelium). The list of probes displaying statistically significant differences in expression 
between the lesion and healthy tissue contained 3850 probes at a significance level of 0.1. 
This pronounced difference in the sizes of gene lists result from the fact that the algorithm 
used for controlling type I errors (FDR) depends on the input set. The larger the initial gene 
list, the larger number of genes will pass the FDR control at a similar p-value distribution; in 
our case, the number of analyzed probes in the dataset for Crohn’s disease is five times 
larger than that in the dataset for psoriasis.  
The lists of differentially expressed genes were input into the MetaCore program. Because 
microarrays contained not only gene probes, but also a large number of ESTs with 
unidentified functions, the size of gene lists at this stage changed because not all the probes 
had the corresponding gene in the MetaCore database and because some probes 
corresponded to more than one gene. The lists of recognized genes comprised 425 and 2033 
items for psoriasis and Crohn’s disease, respectively. 
The common part for the compared lists comprised 49 genes, which is a significant 
overlapping (p value = 4.94 × 10 –2 ). The significance was estimated using Fisher’s test. The 
complete set contained 9017 genes present in both studied datasets (this set was identified 
by comparing the complete lists of genes for both microarrays in MetaCore). The lists of 
genes with altered expression were reduced to the subset of genes present in both datasets. 
Thus, these particular 49 genes were selected for further analysis (Table 1). 
It was of interest to determine the molecular processes with which the genes common to 
psoriasis and Crohn’s disease are associated. Table 2 consolidates the most probable cell 
processes with involvement of the genes listed in Table 1, as determined by the MetaCore 
software tools. These processes (Table 2) fall into two main groups—related to inflammation 
and cell cycle. Indeed, the pathological lesions in both psoriasis and Crohn’s disease  
are inflammatory foci. The cell cycle is also considerably affected in both pathologies.  
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An increased proliferation of keratinocytes is observed in the psoriatic skin, an 
inflammatory focus.  
 

GNA15 SFPQ IFI35 IER2 OAS2 RFK UBE2L6 

CBX3 CG018 CSNK1D SYNCRIP PSME2 CTSC CASP4 

GPM6B UGT1A4 STAT3 S100A8 FOXC1 SOSTDC1 ETS2 

UGT1A6 VKORC1 TRIM22 RARG TRAK2 SERPINB5 MECP2 

IFI44 H2AFY TXNDC1 ARMET ZNF207 KIAA1033 QPCT 

DEGS1 MIB1 IRF9 DDOST DNAJC7 RBPMS JUNB 

LONRF1 HMGN1 MRPL9 FGFR2 CDC42EP1 S100A9 PHGDH 

Table 1. Genes displaying altered expression in both psoriasis and Crohn's disease. 

 

Process p value 

Inflammation: interferon signaling pathways 2.19E-03 

Signal transduction: Wnt signaling pathways 1.20E-02 

Regulation of translation initiation 5.66E-02 

Morphogenesis of blood vessels 9.76E-02 

DNA repair 1.17E-01 

Inflammation: amphoterin signaling pathways 1.19E-01 

Proteolysis determined by the cell cycle and apoptosis 1.29E-01 

Interleukin regulation of the cell cycle in G1-S phase 1.29E-01 

Signal transduction: androgen receptor signaling pathways 1.34E-01 

Table 2. Cell processes common to psoriasis and Crohn's disease. 

For a more detailed description of the inflammatory response and cell cycle in the parts of 
them most tightly related to the genes listed in Table 1, we constructed gene networks, 
which are fragments of the larger gene networks describing the inflammatory response (Fig. 
2) and cell cycle control (Fig. 3). Figure 2 shows that the inflammatory response is initiated 
by such well-known cytokines as TNF-α, IFN-γ, IL-2, IL-6, IL-17, and IL-23. Then protein 
kinases activate the transcription factors AP-1, STAT3, C/EBP, NF-κB, ISGF3, and others.  
Figure 3 shows that the key cell cycle regulators that changed gene expression are the 
transcription factors AP-1, c-Myc, and STAT3. It is also evident that the genes encoding AP-
1 transcription factor components are involved in both the inflammatory response and cell 
cycle control. It is known that the genes depending on AP-1 play an important role in 
regulation of proliferation, morphogenesis, apoptosis, and cell differentiation. Induction of 
cell differentiation activates transcription of the genes encoding the components of AP-1 
complex [Turpaev K.T., 2006]. We assume that the genes of AP-1 transcription factor are the 
candidate genes involved in the pathogenesis of both psoriasis and Crohn’s disease; 
moreover, this hypothesis is particularly based on the bioinformatics analysis of microarray 
data. Therefore, it was interesting to compare our data with the available information about 
the chromosome localization of the loci associated with psoriasis and Crohn’s disease.  
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Fig. 2. Detail of the gene network describing inflammatory response. Green arrows indicate 
activation of the corresponding network elements, from the level of cytokines to 
transcription factors; light blue arrows, the activation of effector genes by transcription 
factors; and red circles, genes from the list. 

 

 

Fig. 3. Detail of the gene network describing cell cycle control. Green arrows indicate 
activation of the corresponding elements; red arrows, inhibition; and red circles, genes from 
the list. 
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4. Integrated network analysis of transcriptomic and proteomic data in 
psoriasis 

Differentially abundant proteins. Protein abundance was determined by densitometric 
quantification of the protein spots on 2D-electophoresis gel (Figure 4) followed by MALDI-
TOF mass spectrometry. Total of 10 proteins were over-abundant at least 2-fold in lesional 
skin compared with uninvolved skin: Keratin 14, Keratin 16, Keratin 17, Squamous cell 
carcinoma antigen, Squamous cell carcinoma antigen-2, Enolase 1, Superoxide dismutase 
[Mn], Galectin-7, S100 calcium-binding protein A9 and S100 calcium-binding protein A7.  
 

 

Fig. 4. Representative silver-stained 2DE gel images of lesional and uninvolved skin biopsy 
lysates. a) - gel image of lesional skin biopsy lysate; b) - gel image of uninvolved skin biopsy 
lysate. Spots corresponding to proteins overexpressed in lesions are marked with red 
rectangles and numbered. Spot 1 correspond to 3 proteins of keratin family, spot 2 - SCCA2, 
spot 3 - SCCA1, spot 4 - enolase 1, spot 5 - SOD2, spot 6 - galectin-7. S100A7 is found in 
spots 7 and 8 and S100A9 corresponds to 9 th and 10 th spots. 

Several of these proteins were previously reported to be over-abundant in psoriatic plaques 
[Leigh IM et al., 1995; Madsen P et al., 1991; Vorum H et al., 1996; Takeda A et al.., 2002]. The 
proteins belonged to a diverse set of pathways and processes.  
We attempted to connect the proteins into a network using a collection of over 300,000 
manually curated protein interactions and several variants of "shortest path" algorithms 
applied in MetaCore suite [Nikolsky Y et al, 2009] (Figure 5). The genes encoding 
overabundant proteins were found to be regulated by several common transcription factors 
(TFs) including members of the NFkB and AP-1 complexes, STAT1, STAT3, c-Myc and SP1. 
Moreover, the upstream pathways activating these TFs were initiated by the overabundant 
S100A9 through its receptor RAGE [Ghavami S et al., 2008] and signal transduction kinases 
(JAK2, ERK, p38 MAPK). This network also included a positive feedback loop as S100A9 
expression was determined to be controlled by NF-kB [Schreiber J et al., 2006]. The topology 
of this proteomics-derived network was confirmed by several transcriptomics studies 
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[Tsuruta D, 2009; Sano S et al., 2008; Ghoreschi K et al., 2003; Piruzian ES et al., 2009; 
Gandarillas A & Watt FM, 1997; Arnold I & Watt FM, 2001] which showed overexpression 
of these TFs in psoriasis lesions. Transiently expressed TFs normally have low protein level 
and, therefore, usually fail to be detected by proteomics methods. 
 

 

Fig. 5. Network illustrating regulatory pathways leading to transcription activation of 
proteomics markers. Red circles denote upregulated proteins. 

RAGE receptor is clearly the key regulator on this network and plays the major role in 
orchestrating observed changes of protein abundance. This protein is abundant in both 
keratinocytes and leukocytes, though normally its expression is low [Lohwasser C et al., 
2006]. RAGE participates in a range of processes in these cell types, including inflammation. 
It is being investigated as a drug target for treatment of various inflammatory disorders 
[Santilli F et al., 2009]. Thus, we may propose that RAGE can also play significant role in 
psoriasis. 
We used Affymetrix gene expression data set from the recent study [Yao Y et al., 2008] 
involving 33 psoriasis patients. Originally, more than 1300 probe sets were found to be 
upregulated in lesions as compared with unlesional skin of the same people. We identified 
451 genes overexpressed in lesional skin under more stringent statistical criteria (28 samples 
of lesional skin were matched with their nonlesional counterparts from the same patients in 
order to exclude individual expression variations, genes with fold change >2.5 and FDR-
adjusted p-value < 0.01 were considered as upregulated). The genes encoding 7 out of 10 
proteomic markers were overexpressed, well consistent with proteomics data. Expression of 
Enolase 1, Keratin 14 and Galectin 7 was not altered. 
Despite good consistency between the proteomics and expression datasets, the two orders of 
magnitude difference in list size make direct correlation analysis difficult. Therefore, we 
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applied interactome methods for the analysis of common upstream regulation of the two 
datasets at the level of transcription factors. First, we defined the sets of the most influential 
transcription factors using two recently developed methods of interactome analysis 
[Nikolsky Y et al., 2008] and the "hidden nodes" algorithm [Nikolskaya T et al., 2009]. The 
former method ranks TFs based on their one-step overconnectivity with the dataset of 
interest compared to randomly expected number of interactions. The latter approach takes 
into account direct and more distant regulation, calculating the p-values for local 
subnetworks by an aggregation algorithm [Nikolskaya T et al., 2009]. We calculated and 
ranked the top 20 TFs for each data type and added several TFs identified by network 
analysis approaches (data not shown). The TFs common for both data types were taken as 
set of 'important pathological signal transducers' (Figure 6). Noticeably, they closely 
resemble the set of TFs regulating the protein network on Figure 5. 
 

 

Fig. 6. Common transcriptional factors important for regulation of objects at both 
transcriptomics and proteomic levels. Objects in MetaCore database representing 
transcriptional factors found to be important regulators of pathology-related genes. Red 
circles denote that corresponding gene is upregulated in psoriatic lesion.  

In the next step, we applied "hidden nodes" algorithm to identify the most influential 
receptors that could trigger maximal possible transcriptional response. In total, we found 
226 membrane receptors significantly involved into regulation of 462 differentially 
expressed genes ('hidden nodes' p-value < 0.05). Assuming that topological significance 
alone does not necessarily prove that all receptors are involved in real signaling or are even 
expressed in the sample; we filtered this list by expression performance. The receptors used 
were those whose encoding genes or corresponding ligands were overexpressed greater 
than 2.5 fold. We assumed that the pathways initiated by over-expressed receptors and 
ligands are more likely to be activated in psoriasis. Here we assumed that expression 
alterations and protein abundance are at least collinear. An additional criterion was that the 
candidate receptors had to participate in the same signaling pathways with at least one of 
the common TFs. No receptor was rejected based on this criterion. In total, 44 receptors passed 
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the transcription cut-off. Of these 24 receptor genes were overexpressed; 23 had overexpressed 
ligands and 3 cases had overexpression of both ligands and receptors (IL2RB, IL8RA and 
CCR5; see Figures 7 and 8). Interestingly, for several receptors, more than one ligand was 
overexpressed (Figure 7). Several receptors are composed of several subunits, only one of 
which was upregulated (for example, IL-2 receptor has only gamma subunit gene significantly 
upregulated). Out of 44 receptors we identified by topology analysis, 21 were previously 
reported as psoriasis markers (they are listed in Table 3 with corresponding references). The 
other 23 receptors were not reported to be linked to psoriasis or known to be implicated in 
other inflammatory diseases. These receptors belong to different cellular processes 
(development, cell adhesion, chemotaxis, apoptosis and immune response) (Table 6). 
 

Gene Connection to psoriasis Gene Connection to psoriasis 

EPHA2 No AGER Yes [Foell D et al., 2003] 

EPHB2 No CCR1 Yes [Horuk R, 2005] 

FCER1G No CCR2 Yes [Vestergaard C et al., 2004] 

INSR No CCR3 Yes [Rottman JB et al., 2001] 

LTBR No CCR5  Yes [de Groot M et al., 2007] 

PLAUR No CD2  Yes [Ellis CN & Krueger GG., 2001] 

TNFRSF10A No CD27  Yes [De Rie MA et al., 1996] 

TNFRSF10B No CD36  Yes [Prens E et al., 1996] 

CD44 Possible [Reichrath J et al, 
1997] 

CD3D  Yes [Haider AS, et al., 2007] 

CSF2RB Possible [Kelly R et al., 1993] EGFR  Yes [Castelijns FA et al., 1999] 

CXCR4 Possible [Gu J et al., 2002] IL17RA  Yes [Johansen C et al., 2009] 

FZD4 Possible[Reischl J et al., 2007] IL1R1  Yes [Debets R et al., 1997] 

GABBR1 Possible[Shiina T et al., 2009] IL8RA  Yes [Schulz BS et al., 1993] 

IL10RA Possible [Asadullah K et al., 
1998] 

IL8RB  Yes [Schulz BS et al., 1993] 

IL13RA1 Possible [Cancino-Diaz JC et 
al., 2002] 

ITGAL  Yes [Guttman-Yassky E et al., 2008] 

IL2RB Possible [Pietrzak A et al., 
2008] 

ITGB2  Yes [Sjogren F et al., 1999] 

IL2RG Possible [Pietrzak A et al., 
2008] 

LRP1  Yes [Curry JL et al., 2003] 

IL4R Possible [Martin R, 2003] PTPRC Yes [Vissers WH et al., 2004] 

LILRB2 Possible [Penna G et al., 2005] SDC3  Yes [Patterson AM et al., 2008] 

LRP2 Possible [Fu X et al., 2009] SELE Yes [Wakita H &Takigawa M, 1994] 

LRP8 Possible [Fu X et al., 2009] SELPLG  Yes [Chu A et al., 1999] 

ROR2 Possible [Reischl J et al., 2007] TLR4  Yes [Seung NR et al., 2007] 

Table 3. Receptors identified in our study and not yet studied in connection to psoriasis 
('Possible' term was used if protein name co-occurred with psoriasis in articles, but no clear 
evidence of its implication was shown. In some cases, ligands are associated with psoriasis 
(i.e, IL-10)). 

www.intechopen.com



 
Analysis of Transcriptomic and Proteomic Data in Immune-Mediated Diseases 

 

409 

Meta-analysis of multiple OMICs data types and studies is becoming an important research 
tool in understanding complex diseases. Several methods were developed for correlation 
analysis between the datasets of different type, such as mRNA and proteomics [Hack CJ, 
2004; Le Naour F et al., 2001; Steiling K et al., 2009; Conway JP & Kinter M, 2005; Di Pietro C 
et al., 2009]. However, there are many technological challenges to resolve, including 
mismatching protein IDs and mRNA probes, fundamental differences in OMICs 
technologies, differences in experimental set-ups in studies done by different groups etc 
[Mijalski T et al., 2005]. Moreover, biological reasons such as differences in RNA and protein 
degradation processes also contribute to variability of different data types. As a result, 
transcriptome and proteome datasets usually show only weak positive correlation although 
were considered as complimentary. More recent studies focused on functional similarities 
and differences observed for different levels of cellular organization and reflected in 
different types of OMICs data [Habermann JK et al., 2007; Chen YR et al., 2006; Shachaf CM 
et al., 2008; Zhao C et al., 2009]. For example, common interacting objects were found for 
distinct altered transcripts and proteins in type 2 diabetes [Gerling IC et al., 2006]. In one 
leukemia study [Zheng PZ et al., 2005] authors found that distinct alterations at 
transcriptomics and proteomic levels reflect different sides of the same deregulated cellular 
processes.  
 

 

Fig. 7. Candidate receptors with their respective upregulated ligands. Initial steps of 
pathways presumably activated in lesions (ligands, overexpressed at transcriptional level 
and their corresponding receptors) Red circles denote that corresponding gene is 
upregulated in psoriatic lesion. 

The overall concordance between mRNA and protein expression landscapes was addressed 
in earlier studies, although the data types were compared mostly at the gene/protein level 
with limited functional analysis [Cox B et al., 2005; Mijalski T et al., 2005]. Later, ontology 
enrichment co-examination of transcriptomics and proteomic data has shown that the two 
data types affect similar biological processes and are complimentary [Chen YR, et al., 2006; 
Zheng PZ et al., 2005; Zhao C et al., 2009]. However, the key issue of biological causality and 
functional consequences of distinct regulation events at both mRNA and protein levels of 
cellular organization were not yet specifically addressed. These issues cannot be resolved by 

www.intechopen.com



 
Computational Biology and Applied Bioinformatics 

 

410 

low resolution functional methods like enrichment analysis. Instead, one has to apply more 
precise computational methods such as topology and biological networks, which take into 
consideration directed binary interactions and multi-step pathways connecting objects 
between the datasets of different types regardless of their direct overlap at gene/protein 
level [Ideker T & Sharan R, 2008; Chuang HY et al., 2007]. For example, topology methods 
such as "hidden nodes" [Dezso Z et al., 2009; Nikolsky Y et al., 2008] can identify and rank 
the upstream regulatory genes responsible for expression and protein level alterations while 
network tools help to uncover functional modules most affected in the datasets, identify the 
most influential genes/proteins within the modules and suggest how specific modules 
contribution to clinical phenotype [Nikolsky Y et al., 2005; Gerling IC et al., 2006].  
In this study, we observed substantial direct overlap between transcriptomics and 
proteomics data, as 7 out of 10 over-abundant proteins in psoriasis lesions were encoded by 
differentially over-expressed genes. However, the two orders of magnitude difference in 
dataset size (462 genes versus 10 proteins) made the standard correlation methods 
inapplicable. Besides, proteomics datasets display a systematic bias in function of abundant 
proteins, favoring "effector" proteins such as structural, inflammatory, core metabolism 
proteins but not the transiently expressed and fast degradable signaling proteins. Therefore, 
we applied topological network methods to identify common regulators for two datasets 
such as the most influential transcription factors and receptors. We have identified some key 
regulators of the "proteomics" set among differentially expressed genes, including 
transcription factors, membrane receptors and extracellular ligands, thus reconstructing 
upstream signaling pathways in psoriasis. In particular, we identified 24 receptors 
previously not linked to psoriasis.  
 

 

Fig. 8. Upregulated candidate receptors with their respective ligands. Initial steps of 
pathways presumably activated in lesions (receptors, overexpressed at transcriptional level 
and their corresponding ligands) Red circles denote that corresponding gene is upregulated 
in psoriatic lesion. 
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Importantly, many ligands and receptors defined as putative starts of signaling pathways 
were activated by transcription factors at the same pathways, clearly indicating on positive 
regulatory loops activated in psoriasis. The versatility and the variety of signaling pathways 
activated in psoriasis is also impressive, which is evident from differentially overexpression 
of 44 membrane receptors and ligands in skin lesions. This complexity and redundancy of 
psoriasis signaling likely contributes to the inefficiency of current treatments, even novel 
therapies such as monoclonal antibodies against TNF-α and IL-23. Thus, the key regulator, 
RAGE receptor, triggers multiple signaling pathways which stay activated even when 
certain immunological pathways are blocked. Our study suggests that combination therapy 
targeting multiple pathways may be more efficient for psoriasis (particularly considering 
feasibility for topical formulations). In addition, the 24 receptors we identified by topology 
analysis and previously not linked with psoriasis can be tested as potential novel targets for 
disease therapy. The functional machinery of psoriasis is still not complete and additional 
studies can be helpful in "filling the gaps" of our understanding of its molecular 
mechanisms. For instance, kinase activity is still unaccounted for, as signaling kinases are 
activated only transiently and are often missed in gene expression studies. Topological 
analysis methods such as "hidden nodes" [Dezso Z et al., 2004] may help to reconstruct 
regulatory events missing in the data. Also, the emerging phosphoproteomics methodology 
may prove to become a helpful and complimentary OMICs technology. The network 
analysis methodology is not dependent on the type of data analyzed and or any 
gene/protein content overlap between the studies and is well applicable for functional 
integration of multiple data types. 

3. Conclusion 

Thus, we succeeded in comparing the molecular processes characteristic of psoriasis and 
Crohn’s disease and detecting the candidate genes involved in the processes common for 
both pathologies and critical for their development. Identification of the proteins encoded 
by these genes is an important aspect of the research performed, because the proteins are 
particular targets for elaborating new approaches to treating psoriasis and Crohn’s disease. 
Our data obtained by analyzing expression of the candidate genes for psoriasis and Crohn’s 
disease can enhance the search for new biological targets for the corresponding therapeutics.  
In order to gain insight into molecular machinery underlying the disease, we conducted a 
comprehensive meta-analysis of proteomics and transcriptomics of psoriatic lesions from 
independent studies. Network-based analysis revealed similarities in regulation at both 
proteomics and transcriptomics level. We identified a group of transcription factors 
responsible for overexpression of psoriasis genes and a number of previously unknown 
signaling pathways that may play a role in this process. We also evaluated functional 
synergy between transcriptomics and proteomics results. 
We have successfully applied network-based methods to integrate and explore two distinct 
high-throughput disease data sets of different origin and size. Through identification of 
common regulatory machinery that is likely to cause overexpression of genes and proteins, 
we came to the signaling pathways that might contribute to the altered state of regulatory 
network in psoriatic lesion. Our approach allows easy integrative investigation of different 
data types and produces biologically meaningful results, leading to new potential therapy 
targets. We have demonstrated that pathology can be caused and maintained by a great 
amount of various cascades, many previously not described as implicated in psoriasis; 
therefore, combined therapies targeting multiple pathways might be effective in treatment. 
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