100 research outputs found

    Learning Raw Image Denoising with Bayer Pattern Unification and Bayer Preserving Augmentation

    Full text link
    In this paper, we present new data pre-processing and augmentation techniques for DNN-based raw image denoising. Compared with traditional RGB image denoising, performing this task on direct camera sensor readings presents new challenges such as how to effectively handle various Bayer patterns from different data sources, and subsequently how to perform valid data augmentation with raw images. To address the first problem, we propose a Bayer pattern unification (BayerUnify) method to unify different Bayer patterns. This allows us to fully utilize a heterogeneous dataset to train a single denoising model instead of training one model for each pattern. Furthermore, while it is essential to augment the dataset to improve model generalization and performance, we discovered that it is error-prone to modify raw images by adapting augmentation methods designed for RGB images. Towards this end, we present a Bayer preserving augmentation (BayerAug) method as an effective approach for raw image augmentation. Combining these data processing technqiues with a modified U-Net, our method achieves a PSNR of 52.11 and a SSIM of 0.9969 in NTIRE 2019 Real Image Denoising Challenge, demonstrating the state-of-the-art performance. Our code is available at https://github.com/Jiaming-Liu/BayerUnifyAug.Comment: Accepted by CVPRW 201

    Tractography-Based Parcellation of Cerebellar Dentate Nuclei via a Deep Nonnegative Matrix Factorization Clustering Method

    Full text link
    As the largest human cerebellar nucleus, the dentate nucleus (DN) functions significantly in the communication between the cerebellum and the rest of the brain. Structural connectivity-based parcellation has the potential to reveal the topography of the DN and enable the study of its subregions. In this paper, we investigate a deep nonnegative matrix factorization clustering method (DNMFC) for parcellation of the human DN based on its structural connectivity using diffusion MRI tractography. We propose to describe the connectivity of the DN using a set of curated tractography fiber clusters within the cerebellum. Experiments are conducted on the diffusion MRI data of 50 healthy adults from the Human Connectome Project. In comparison with state-of-the-art clustering methods, DN parcellations resulting from DNMFC show better quality and consistency of parcels across subjects

    TractCloud: Registration-free tractography parcellation with a novel local-global streamline point cloud representation

    Full text link
    Diffusion MRI tractography parcellation classifies streamlines into anatomical fiber tracts to enable quantification and visualization for clinical and scientific applications. Current tractography parcellation methods rely heavily on registration, but registration inaccuracies can affect parcellation and the computational cost of registration is high for large-scale datasets. Recently, deep-learning-based methods have been proposed for tractography parcellation using various types of representations for streamlines. However, these methods only focus on the information from a single streamline, ignoring geometric relationships between the streamlines in the brain. We propose TractCloud, a registration-free framework that performs whole-brain tractography parcellation directly in individual subject space. We propose a novel, learnable, local-global streamline representation that leverages information from neighboring and whole-brain streamlines to describe the local anatomy and global pose of the brain. We train our framework on a large-scale labeled tractography dataset, which we augment by applying synthetic transforms including rotation, scaling, and translations. We test our framework on five independently acquired datasets across populations and health conditions. TractCloud significantly outperforms several state-of-the-art methods on all testing datasets. TractCloud achieves efficient and consistent whole-brain white matter parcellation across the lifespan (from neonates to elderly subjects, including brain tumor patients) without the need for registration. The robustness and high inference speed of TractCloud make it suitable for large-scale tractography data analysis. Our project page is available at https://tractcloud.github.io/.Comment: MICCAI 202

    Superficial White Matter Analysis: An Efficient Point-cloud-based Deep Learning Framework with Supervised Contrastive Learning for Consistent Tractography Parcellation across Populations and dMRI Acquisitions

    Full text link
    Diffusion MRI tractography is an advanced imaging technique that enables in vivo mapping of the brain's white matter connections. White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts. It enables quantification and visualization of whole-brain tractography. Currently, most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity. We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient and consistent parcellation of 198 SWM clusters from whole-brain tractography. A point-cloud-based network is adapted to our SWM parcellation task, and supervised contrastive learning enables more discriminative representations between plausible streamlines and outliers for SWM. We train our model on a large-scale tractography dataset including streamline samples from labeled SWM clusters and anatomically implausible streamline samples, and we perform testing on six independently acquired datasets of different ages and health conditions (including neonates and patients with space-occupying brain tumors). Compared to several state-of-the-art methods, SupWMA obtains highly consistent and accurate SWM parcellation results on all datasets, showing good generalization across the lifespan in health and disease. In addition, the computational speed of SupWMA is much faster than other methods.Comment: 12 pages, 7 figures. Extension of our ISBI 2022 paper (arXiv:2201.12528) (Best Paper Award Finalist

    TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance

    Full text link
    We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize pointwise tissue microstructure and positional information from all points within a fiber tract. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, we propose a Critical Region Localization algorithm to identify highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. The localized critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.Comment: 28 pages, 7 figure

    A Novel Deep Clustering Framework for Fine-Scale Parcellation of Amygdala Using dMRI Tractography

    Full text link
    The amygdala plays a vital role in emotional processing and exhibits structural diversity that necessitates fine-scale parcellation for a comprehensive understanding of its anatomico-functional correlations. Diffusion MRI tractography is an advanced imaging technique that can estimate the brain's white matter structural connectivity to potentially reveal the topography of the amygdala for studying its subdivisions. In this work, we present a deep clustering pipeline to perform automated, fine-scale parcellation of the amygdala using diffusion MRI tractography. First, we incorporate a newly proposed deep learning approach to enable accurate segmentation of the amygdala directly on the dMRI data. Next, we design a novel streamline clustering-based structural connectivity feature for a robust representation of voxels within the amygdala. Finally, we improve the popular joint dimensionality reduction and k-means clustering approach to enable amygdala parcellation at a finer scale. With the proposed method, we obtain nine unique amygdala parcels. Experiments show that these parcels can be consistently identified across subjects and have good correspondence to the widely used coarse-scale amygdala parcellation

    Genetic variations in APPL2 are associated with overweight and obesity in a Chinese population with normal glucose tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>APPL1 and APPL2 are two adaptor proteins, which can mediate adiponectin signaling via binding to N terminus of adiponectin receptors in muscle cells. Genes encoding adiponectin and adiponectin receptors contribute to insulin resistance and the risk of obesity, and genetic variants of <it>APPL1 </it>are associated with body fat distribution. However, the association between genetic variations of <it>APPL2 </it>and metabolic traits remains unknown. In the current study, we aimed to test the impacts of <it>APPL2 </it>genetic variants on obesity in a Chinese population with normal glucose tolerance.</p> <p>Methods</p> <p>We genotyped six single nucleotide polymorphisms (SNPs) in <it>APPL2 </it>in 1,808 non-diabetic subjects. Overweight and obesity were defined by body mass index (BMI). Obesity-related anthropometric parameters were measured, including height, weight, waist circumference, hip circumference. BMI and waist-hip ratio (WHR) were calculated.</p> <p>Results</p> <p>We found significant evidence of association with overweight/obesity for rs2272495 and rs1107756. rs2272495 C allele and rs1107756 T allele both conferred a higher risk of being overweight and obese (OR 1.218, 95% CI 1.047-1.416, <it>p </it>= 0.011 for rs2272495; OR 1.166, 95% CI 1.014-1.341, <it>p </it>= 0.031 for rs1107756). After adjusting multiple comparisons, only the effect of rs2272495 on overweight/obesity remained to be significant (empirical <it>p </it>= 0.043). Moreover, we investigated the effects of these SNPs on obesity-related quantitative traits in all participants. rs2272495 was associated with BMI (<it>p </it>= 0.015), waist circumference (<it>p </it>= 0.006), hip circumference (<it>p </it>= 0.025) as well as WHR (<it>p </it>= 0.047) under a recessive model. Similar associations were found for rs1107756 except for WHR.</p> <p>Conclusion</p> <p>This study suggests that genetic variations in <it>APPL2 </it>are associated with overweight and obesity in Chinese population with normal glucose tolerance.</p
    corecore