As the largest human cerebellar nucleus, the dentate nucleus (DN) functions
significantly in the communication between the cerebellum and the rest of the
brain. Structural connectivity-based parcellation has the potential to reveal
the topography of the DN and enable the study of its subregions. In this paper,
we investigate a deep nonnegative matrix factorization clustering method
(DNMFC) for parcellation of the human DN based on its structural connectivity
using diffusion MRI tractography. We propose to describe the connectivity of
the DN using a set of curated tractography fiber clusters within the
cerebellum. Experiments are conducted on the diffusion MRI data of 50 healthy
adults from the Human Connectome Project. In comparison with state-of-the-art
clustering methods, DN parcellations resulting from DNMFC show better quality
and consistency of parcels across subjects