33 research outputs found

    In-plane Hall effect in rutile oxide films induced by the Lorentz force

    Full text link
    The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the in-plane Hall effect (IPHE) in centrosymmetric rutile RuO2 and IrO2 single-crystal films under an in-plane magnetic field. The measured Hall resistivity is found to be proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the IPHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of in-plane anomalous Hall effects and quantum anomalous Hall effects. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family

    Estimation of ischemic core in acute ischemic stroke with CT angiography and non-contrast CT: Attenuation changes in ASPECTS regions vs. automated ASPECTS scoring

    Get PDF
    PurposeReperfusion therapies for acute ischemic stroke due to large-vessel occlusion (AIS-LVO) are highly time-dependent, and large infarction is related to poor outcomes and risk of symptomatic hemorrhage. It is of significance to investigate and optimize the screening means and selection criteria for reperfusion therapies to identify more appropriate patients with better outcomes. This study aimed to compare the performance of attenuation changes vs. automated Alberta Stroke Program Early CT Score (ASPECTS) and using CT angiography (CTA) source images vs. non-contrast CT (NCCT) in distinguishing the infarction extent of ischemic core volumes ā‰„ 70 ml within different time windows.MethodsA total of 73 patients with AIS-LVO who received multimodal CT were analyzed. The automated software was used to calculate ASPECTS. Attenuation change was defined as the sum of products of relative Hounsfield unit (rHU) values times weighting factors of all 10 ASPECTS regions. rHU value of each region was the HU of the ischemic side over that of the contralateral. The corresponding weighting factors were the regression coefficients derived from a multivariable linear regression model which was used to correlate regional rHU with ischemic core volumes, because each region in the ASPECTS template is weighted disproportionally in the ASPECTS system. Automated ASPECTS and attenuation changes were both calculated using CTA and NCCT, respectively.ResultsAttenuation changes were correlated with ischemic core volumes within different time windows (Rho ranging from 0.439 to 0.637). In classification of the ischemic core ā‰„ 70 ml, the performances of attenuation changes were comparable with ASPECTS (area under the curve [AUC] ranging from 0.799 to 0.891), with DeLongā€™s test (P = 0.079, P = 0.373); using CTA (AUC = 0.842) was not different from NCCT (AUC = 0.838).ConclusionAttenuation changes in ASPECTS regions were correlated with ischemic core volumes. In the classification of infarction volumes, attenuation changes had a high diagnostic ability comparable with automated ASPECTS. Measurement of attenuation changes is not involved in complicated scoring algorithms. This measurement can be used as an available, rapid, reliable, and accurate means to evaluate infarction extent within different time windows. The usefulness of infarction volumes measured by attenuation changes to identify more appropriate patients for reperfusion therapies can be validated in future clinical trials

    In Vivo Delivery of Gremlin siRNA Plasmid Reveals Therapeutic Potential against Diabetic Nephropathy by Recovering Bone Morphogenetic Protein-7

    Get PDF
    Diabetic nephropathy is a complex and poorly understood disease process, and our current treatment options are limited. It remains critical, then, to identify novel therapeutic targets. Recently, a developmental protein and one of the bone morphogenetic protein antagonists, Gremlin, has emerged as a novel modulator of diabetic nephropathy. The high expression and strong co-localization with transforming growth factor- Ī²1 in diabetic kidneys suggests a role for Gremlin in the pathogenesis of diabetic nephropathy. We have constructed a gremlin siRNA plasmid and have examined the effect of Gremlin inhibition on the progression of diabetic nephropathy in a mouse model. CD-1 mice underwent uninephrectomy and STZ treatment prior to receiving weekly injections of the plasmid. Inhibition of Gremlin alleviated proteinuria and renal collagen IV accumulation 12 weeks after the STZ injection and inhibited renal cell proliferation and apoptosis. In vitro experiments, using mouse mesangial cells, revealed that the transfect ion of gremlin siRNA plasmid reversed high glucose induced abnormalities, such as increased cell proliferation and apoptosis and increased collagen IV production. The decreased matrix metalloprotease level was partially normalized by transfection with gremlin siRNA plasmid. Additionally, we observed recovery of bone morphogenetic protein-7 signaling activity, evidenced by increases in phosphorylated Smad 5 protein levels. We conclude that inhibition of Gremlin exerts beneficial effects on the diabetic kidney mainly through maintenance of BMP-7 activity and that Gremlin may serve as a novel therapeutic target in the management of diabetic nephropathy

    A Low-Altitude Obstacle Avoidance Method for UAVs Based on Polyhedral Flight Corridor

    No full text
    UAVs flying in complex low-altitude environments often require real-time sensing to avoid environmental obstacles. In previous approaches, UAVs have usually carried out motion planning based on primitive navigation maps such as point clouds and raster maps to achieve autonomous obstacle avoidance. However, due to the huge amount of data in these raw navigation maps and the highly discrete map information, the efficiency of solving the UAVā€™s real-time trajectory optimization is low, making it difficult to meet the demand for efficient online motion planning. A flight corridor is a series of unobstructed continuous areas and has convex properties. The flight corridor can be used as a simple parametric representation to characterize the safe flight space in the environment, and used as the cost of the collision term in the trajectory back-end optimization for trajectory solving, which can improve the efficiency of real-time trajectory solving and ensure flight safety. Therefore, this paper focuses on the construction of safe flight corridors for UAVs and autonomous obstacle avoidance algorithms for UAVs based on safe flight corridors, based on a rotary-wing UAV platform, and proposes a polyhedral flight corridor construction algorithm and realizes autonomous obstacle avoidance for UAVs based on the constructed flight corridors

    Mobile Payment Protocol with Deniably Authenticated Property

    No full text
    Mobile payment services have been widely applied in our daily life, where users can conduct transactions in a convenient way. However, critical privacy concerns have arisen. Specifically, a risk of participating in a transaction is the disclosure of personal privacy. This might occur if, for example, the user pays for some special medicine, such as AIDS medicine or contraceptives. In this paper, we propose a mobile payment protocol that is suitable for mobile devices only with limited computing resources. In particular, the user in a transaction can confirm the identity of others in the same transaction while the user cannot show convincing evidence to prove that others also take part in the same transactions. We implement the proposed protocol and test its computation overhead. The experiment results corroborate that the proposed protocol is suitable for mobile devices with limited computing resources

    Roles of interface engineering in performance optimization of skutteruditeā€based thermoelectric materials

    No full text
    Abstract Interface engineering has prevailed in the thermoelectric field for decades, and related performance has achieved great progress. Therefore, an inā€depth understanding of the impacts of the interface effect on the thermoelectric transport parameters is of vital importance. In this paper, taking skutteruditeā€based thermoelectric materials as typical examples, the formation mechanism and preparation process of various interface types, including 1D dislocations, 2D grain refinement, 3D nanocomposites, and microā€nanopores, are briefly summarized. In addition, we also systemically highlight recently striking achievements related to interfacial design to reveal the distinctive effect of each interface structure on the transport behavior of carriers and phonons. Finally, existing challenges in the thermoelectric performance optimization achieved by interface engineering are pointed out, and an outlook for further thermoelectric research is presented

    Soluble monomeric human programmed cell death-ligand 1 inhibits the functions of activated T cells

    Get PDF
    IntroductionThe presence of soluble human programmed cell death-ligand 1 (shPD-L1) in the blood of patients with cancer has been reported to be negatively correlated with disease prognosis. However, little information exists about the mechanisms underlying high levels of shPD-L1 for promoting disease progression.MethodsIn this study, we first analyzed the correlations between shPD-L1 and apoptosis of T cells in patients with cancer, then tested the effect of shPD-L1 on T-cell functions and the production of regulatory T cells.ResultsWe found that the apoptosis of human peripheral PD-1+CD4+ T cells was significantly elevated in patients with cancer compared with healthy donors and was positively correlated with circulating PD-L1 levels in patients with cancer. In vitro, monomeric shPD-L1 significantly inhibited the proliferation, cytokine secretion, and cancer cell-killing activity of peripheral blood mononuclear cells (PBMCs) activated by either agonist antibodies or HATac (high-affinity T cell activation core)-NYE (NY-ESO-1 antigen). It also promoted CD4+ T cells to express forkhead family transcription factor 3 (FoxP3) for the conversion of induced T regulatory cells, which was more significant than that mediated by soluble human PD-L1 fusion protein (shPD-L1-Fc).DiscussionThese results confirm that soluble PD-L1 could be a candidate for inhibiting the functions of activated T cells, promoting peripheral tolerance to tumor cells, and implicating in system tumor immune escape in addition to the tumor microenvironment. This is an important mechanism explaining the negative correlation between peripheral blood PD-L1 levels and cancer prognosis. Therefore, understanding the roles of hPD-L1 in peripheral blood will be helpful for the development of precision immunotherapy programs in treating various tumors

    The auxin response factor gene family in allopolyploid Brassica napus.

    No full text
    Auxin response factor (ARF) is a member of the plant-specific B3 DNA binding superfamily. Here, we report the results of a comprehensive analysis of ARF genes in allotetraploid Brassica napus (2n = 38, AACC). Sixty-seven ARF genes were identified in B. napus (BnARFs) and divided into four subfamilies (I-IV). Sixty-one BnARFs were distributed on all chromosomes except C02; the remaining were on Ann and Cnn. The full length of the BnARF proteins was highly conserved especially within each subfamily with all members sharing the N-terminal DNA binding domain (DBD) and the middle region (MR), and most contained the C-terminal dimerization domain (PBI). Twenty-one members had a glutamine-rich MR that may be an activator and the remaining were repressors. Accordingly, the intron patterns are highly conserved in each subfamily or clade, especially in DBD and PBI domains. Several members in subfamily III are potential targets for miR167. Many putative cis-elements involved in phytohormones, light signaling responses, and biotic and abiotic stress were identified in BnARF promoters, implying their possible roles. Most ARF proteins are likely to interact with auxin/indole-3-acetic acid (Aux/IAA) -related proteins, and members from different subfamilies generally shared many common interaction proteins. Whole genome-wide duplication (WGD) by hybridization between Brassica rapa and Brassica oleracea and segmental duplication led to gene expansion. Gene loss following WGD is biased with the An-subgenome retaining more ancestral genes than the Cn-subgenome. BnARFs have wide expression profiles across vegetative and reproductive organs during different developmental stages. No obvious expression bias was observed between An- and Cn-subgenomes. Most synteny-pair genes had similar expression patterns, indicating their functional redundancy. BnARFs were sensitive to exogenous IAA and 6-BA treatments especially subfamily III. The present study provides insights into the distribution, phylogeny, and evolution of ARF gene family

    A Comparative Study on the K-ion Storage Behavior of Commercial Carbons

    No full text
    Potassium-ion battery, a key analog of lithium-ion battery, is attracting enormous attentions owing to the abundant reserves and low cost of potassium salts, and the electrochemically reversible insertion/extraction of the K-ion within the commercial graphite inspires a research spotlight in searching and designing suitable carbon electrode materials. Herein, five commercially available carbons are selected as the anode material, and the K-ion storage capability is comparably evaluated from various aspects, including reversible capacity, cyclability, coulombic efficiency, and rate capability. This work may boost the development of potassium-ion batteries from a viewpoint of practical applications
    corecore