17 research outputs found

    Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    Get PDF
    BACKGROUND: We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. METHODS: The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 10(5) B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. RESULTS: The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. CONCLUSION: LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma

    Combination Analysis of Future Polar-Type Gravity Mission and GRACE Follow-On

    No full text
    Thanks to the unprecedented success of Gravity Recovery and Climate Experiment (GRACE), its successive mission GRACE Follow-On (GFO) has been in orbit since May 2018 to continue measuring the Earth’s mass transport. In order to possibly enhance GFO in terms of mass transport estimates, four orbit configurations of future polar-type gravity mission (FPG) (with the same payload accuracy and orbit parameters as GRACE, but differing in orbit inclination) are investigated by full-scale simulations in both standalone and jointly with GFO. The results demonstrate that the retrograde orbit modes used in FPG are generally superior to prograde in terms of gravity field estimation in the case of a joint GFO configuration. Considering the FPG’s independent capability, the orbit configurations with 89- and 91-degree inclinations (namely FPG-89 and FPG-91) are further analyzed by joint GFO monthly gravity field models over the period of one-year. Our analyses show that the FPG-91 basically outperforms the FPG-89 in mass change estimates, especially at the medium- and low-latitude regions. Compared to GFO & FPG-89, about 22% noise reduction over the ocean area and 17% over land areas are achieved by the GFO & FPG-91 combined model. Therefore, the FPG-91 is worthy to be recommended for the further orbit design of FPGs

    Specific Direction-Based Outlier Detection Approach for GNSS Vector Networks

    No full text
    In this paper we propose an outlier detection approach for GNSS vector networks based on the specific direction (i.e., SD approach), along which the test statistic constructed reaches the maximum. We derive the unit vector of this specific direction in detail, and prove that the unit vector is the same as that determined by the outlier estimates in three-dimensional (3D) approach, while the distribution of the maximum test statistic in this direction is the square root of Chi-squared distribution. Therefore, eliminating an outlier along this specific direction can get the same result as that of eliminating all three components of outlier vector in 3D approach. The mathematical equivalence of SD approach and 3D approach is further demonstrated by a real GNSS network. Moreover, preliminary application of the SD approach to detect the abnormal antenna height measurement is carried out in terms of numerical simulations of multiple baseline solutions, and it shows that the SD approach can effectively detect baselines that are directly infected by corresponding receiver antenna height errors

    Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS)

    No full text
    The main challenge of precise point positioning (PPP) applications is the long convergence time of typically a half hour, or even more, to achieve centimeter accuracy. Even when the multi-constellation is involved and ambiguity resolution is implemented, it still requires about ten minutes. It is becoming a hot spot to incorporate the low Earth orbit (LEO) satellite constellation for enhancing the Global Navigation Satellite System (GNSS), named here as LEO-enhanced GNSS (LeGNSS). In this system, the LEO satellites cannot only receive GNSS signals, but also serve as GNSS satellites by transmitting similar navigation signals to the ground users, but with higher signal strength and much faster geometric change due to their low altitude. As a result, the convergence time of PPP is expected to be shortened to a few minutes, or even seconds. Simulation software is developed to simulate GNSS and LEO observations for ground stations taking into account tropospheric delay, satellite clock errors, observation noises, as well as other error sources. Then the number of visible satellites, the geometry dilution of precision (GDOP), and the convergence time of the kinematic mode of PPP are evaluated on a global scale compared to those of GNSS systems. The simulation results show that LeGNSS can decrease the PPP convergence to 5 min. If there are more LEO satellites included in the LeGNSS, it is expected that the initialization of PPP can be further shortened

    Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular Carcinoma

    Get PDF
    <div><p>Objective</p><p>Many studies have shown that magnetic fields (MF) inhibit tumor growth and influence the function of immune system. However, the effect of MF on mechanism of immunological function in tumor-bearing mice is still unclear.</p><p>Methods</p><p>In this study, tumor-bearing mice were prepared by subcutaneously inoculating Balb/c mice with hepatocarcinoma cell line H22. The mice were then exposed to a low frequency MF (0.4 T, 7.5 Hz) for 30 days. Survival rate, tumor growth and the innate and adaptive immune parameters were measured.</p><p>Results</p><p>MF treatment could prolong survival time (n = 28, p<0.05) and inhibit tumor growth (n = 9, p<0.01) in tumor-bearing mice. Moreover, this MF suppressed tumor-induced production of cytokines including interleukin-6 (IL-6), granulocyte colony- stimulating factor (G-CSF) and keratinocyte-derived chemokine (KC) (n = 9–10, p<0.05 or 0.01). Furthermore, MF exposure was associated with activation of macrophages and dendritic cells, enhanced profiles of CD4<sup>+</sup> T and CD8<sup>+</sup> T lymphocytes, the balance of Th17/Treg and reduced inhibitory function of Treg cells (n = 9–10, p<0.05 or 0.01) in the mice model.</p><p>Conclusion</p><p>The inhibitory effect of MF on tumor growth was related to the improvement of immune function in the tumor-bearing mice.</p></div

    Magnetic fields transform the development of macrophage subsets.

    No full text
    <p>(A) Proportion of F4/80<sup>+</sup> macrophage cells in PBMC was detected by flow cytometry. (B) The mean proportion of F4/80<sup>+</sup> macrophage cells in PBMC for each group (Mean ± s.e.m.). **<i>P</i><0.01.</p

    Magnetic fields enhances the expression of CD40 in Dendritic Cell.

    No full text
    <p>Proportion of CD11c<sup>+</sup> DC (A) and CD11c<sup>+</sup>CD40<sup>+</sup> DC (B) in PBMC was detected by flow cytometry. (C) The mean proportion of CD11c<sup>+</sup>CD40<sup>+</sup> DC in PBMC for each group (Mean ± s.e.m.). (D) The mean proportion of CD11c<sup>+</sup>CD40<sup>+</sup> DC in tumor infiltrating lymphocytes for each group (Mean ± s.e.m.). *<i>P</i><0.05, **<i>P</i><0.01 or ns = No significant difference.</p
    corecore