115 research outputs found

    Heterogeneity Impacts of Farmers’ Participation in Payment for Ecosystem Services Based on the Collective Action Framework

    Get PDF
    Payments for ecosystem services (PES) are designed to reduce the impact of human activities on eco-sensitive areas. PES programs often adopt economic-incentive and command-control strategies. Increasing the enthusiasm of farmers’ participation is crucial for the sustainability of PES programs and ecosystem restoration. The watershed ecological compensation in Xin’an River Basin is the first horizontal ecological compensation pilot in China. In this study, economic-incentive strategy and command-control strategies in living and farming are implemented simultaneously to improve water quality. Under the collective action framework, we analyze the drivers of farmers’ participation in three concurrent strategies using hierarchical linear models (HLM). The results show: (1) Overall, 81.79%, 76.26%, and 79.11% of farmers are willing to participate in economic-incentive strategy, command-control strategy in living, and command-control strategy in farming, respectively, while 18.21%, 23.74%, and 20.89% are from the village level. (2) Among statistically significant (p < 0.01) factors at the farmer level, social trust (β = 0.305), and social participation (β = 0.134) have positive effects on the economic-incentive strategy; the number of communication and entertainment equipment has a positive effect on the willingness to participate in command-control strategy in living (β = 0.287) and command-control strategy in farming (β = 0.336). (3) At the village level, village characteristics have a direct impact on the farmers’ willingness to participate in strategies. Village woodland area is positively correlated with strategies participation. In addition, village characteristics play a moderating role by influencing farmers’ sustainable livelihood capital. We conclude that different concurrent strategies and collective actions need to be considered in the design of PES programs, particularly in ecologically sensitive areas, which can enrich the theory of collective action and the connotation of PES

    Exposure to arsenic during pregnancy and newborn mitochondrial DNA copy number: A birth cohort study in Wuhan, China

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Chemosphere on 11/11/2019, available online: https://www.sciencedirect.com/science/article/abs/pii/S0045653519325755?via%3Dihub The accepted version of the publication may differ from the final published version.Background: Arsenic (As) is a widely distributed environmental chemical with potentially different toxicities. However, little is known about the impact of maternal As exposure on newborn mitochondrial DNA copy number (mtDNAcn), which may lie on the pathway linking As exposure to adverse health impacts. Objectives: We aimed to explore whether maternal As exposure was associated with newborn mtDNAcn. Methods: We conducted a birth cohort study of 762 mother-infant pairs in Wuhan, China, 2013-2015. Cord blood mtDNAcn was determined using qPCR. Maternal urinary As levels in each trimester were quantified by ICP-MS. Multiple informant models were used to examine the associations of repeated urinary As levels with cord blood mtDNAcn. Results: The median urinary As levels in the first, second, and third trimesters were 17.2 g/L, 16.0 g/L and 17.0 g/L respectively. In the multivariate model, each doubling increase in the first-trimester urinary As level was associated with a 6.6% (95% CI: -12.4%, -0.5%) decrease in cord blood mtDNAcn. The highest versus lowest quintile of first-trimester urinary As level was related to a 19.0% (95% CI: -32.9%, -2.2%) lower cord blood mtDNAcn. There was significant association of urinary As levels in the second and third trimesters with cord blood mtDNAcn. The inverse relationship between first-trimester urinary As level and cord blood mtDNAcn was more pronounced among female infants. Conclusions: First-trimester As exposure was associated with decreased cord blood mtDNAcn. The potential health impacts of decreased mtDNAcn in early life need to be further clarified

    GABAB Receptor Subunit GB1 at the Cell Surface Independently Activates ERK1/2 through IGF-1R Transactivation

    Get PDF
    BACKGROUND: Functional GABA(B) receptor is believed to require hetero-dimerization between GABA(B1) (GB1) and GABA(B2) (GB2) subunits. The GB1 extracellular domain is required for ligand binding, and the GB2 trans-membrane domain is responsible for coupling to G proteins. Atypical GABA(B) receptor responses observed in GB2-deficient mice suggested that GB1 may have activity in the absence of GB2. However the underlying mechanisms remain poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: Here, by using cells overexpressing a GB1 mutant (GB1asa) with the ability to translocate to the cell surface in the absence of GB2, we show that GABA(B) receptor agonists, such as GABA and Baclofen, can induce ERK1/2 phosphorylation in the absence of GB2. Furthermore, we demonstrate that GB1asa induces ERK1/2 phosphorylation through Gi/o proteins and PLC dependent IGF-1R transactivation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that GB1 may form a functional receptor at the cell surface in the absence of GB2

    Fibonacci and Lucas Numbers of the Form 2a + 3b + 5c + 7d

    No full text
    In this paper, we find all Fibonacci and Lucas numbers written in the form 2 a + 3 b + 5 c + 7 d , in non-negative integers a , b , c , d , with 0 &le; max { a , b , c } &le; d

    Consolidated Bioprocess for Bioethanol Production from Lignocellulosic Biomass Using Clostridium thermocellum DSM 1237

    No full text
    A consolidated bioprocessing (CBP) using Clostridium thermocellum DSM 1237 for bioethanol production in anaerobic bottles and a 3-L fermenter from biomass was investigated. The effects of key operational parameters including different carbon sources, temperature, and substrates on the metabolic performance of the strain were firstly evaluated. It was found that ethanol yield reached 0.60 g/L with a cell biomass of 0.80 g/g at the optimal temperature of 60 degrees C with 0.5% (w/v) cellobiose. Further experiments indicated that sugarcane bagasse (SCB) could be utilized to efficiently culture this strain. Ethanol yield reached 0.68 g/L (65.8% of theoretical yield) from alkali-pretreated SCB. In the subsequent 3-L fermenter trial, the maximum ethanol 0.86 g/L (83.3% of theoretical yield) was achieved, with enzymes enriched in both cellulase and xylanase. The CBP provided enzymes on-site and integrated hydrolysis and fermentation in one-step, which might be an effective approach for economic bioethanol production

    Synthesis of β-arylated alkylamides via Pd-catalyzed one-pot installation of a directing group and C(sp3)–H arylation

    No full text
    The synthesis of β-arylated alkylamides via alkyl C–H bond arylation has been realized by means of direct one-pot reactions of acyl chlorides, aryl iodides and 8-aminoquinoline. Depending on the structure of the starting materials, both single and double β-arylated alkylamides could be accessed

    Enhanced Sugars Production with High Conversion Efficiency from Alkali-pretreated Sugarcane Bagasse by Enzymatic Mixtures

    No full text
    Complementary enzymes can considerably enhance the hydrolysis effectiveness of cellulase. The influence of hemicellulase supplementation on high solids saccharification of alkali-pretreated sugarcane bagasse was assessed. Hemicellulase addition of 1200 IU/g substrate with cellulase loading of 10 FPU/g substrate achieved high sugars yield with glucose and xylose conversion efficiency of 95.4% and 87.4%, respectively. To further improve the substrate conversion efficiency based on high sugars production, fed-batch hydrolysis was employed with high solids loading of 20% (w/v) to 25% (w/v). After 96 h hydrolysis with 25% solids loading at cellulase and hemicellulase loading of 20 FPU/g and 1200 IU/g substrate, respectively, the obtained highest total sugars was 242 g/L, with glucose and xylose conversion efficiencies of 98.6% and 94.9%, respectively. An increase in substrate digestibility upon supplementation of mixture enzymes with high sugars production can be realized in high solids fed batch system with proper cellulase and hemicellulase synergism

    Design and Analysis of Brake-by-Wire Unit Based on Direct Drive Pump–Valve Cooperative

    No full text
    Aiming at the requirements of distributed braking and advanced automatic driving, a brake-by-wire unit based on a direct drive pump–valve cooperative is proposed. To realize the wheel cylinder pressure regulation, the hydraulic pump is directly driven by the electromagnetic linear actuator coordinates with the active valve. It has the advantages of rapid response and no deterioration of wheel side space and unsprung mass. Firstly, by analyzing the working characteristics and braking performance requirements of the braking unit, the key parameters of the system are matched. Then, in order to ensure the accuracy of the simulation model, the co-simulation model of the brake unit is established based on the Simulink-AMESim co-simulation platform. Then, the influence law of key parameters on the control performance is analyzed. Finally, the experimental platform of the brake unit is established. The accuracy of the co-simulation model and the feasibility of the brake-by-wire unit based on direct drive pump–valve cooperative are verified through the pressure control experiment and ABS simulation, which shows that the braking unit has good dynamic response and steady-state tracking effect
    • …
    corecore