19 research outputs found

    Assessment of intrahepatic blood flow by Doppler ultrasonography: Relationship between the hepatic vein, portal vein, hepatic artery and portal pressure measured intraoperatively in patients with portal hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormality of hepatic vein (HV) waveforms evaluated by Doppler ultrasonography has been widely studied in patients with chronic liver disease. We investigated the correlation between changes in HV waveforms and portal vein velocity (PVVel), the hepatic artery pulsatility index (HAPI), and also the extent of abnormal Doppler HV waveforms expressed as damping index (DI), severity of portal hypertension expressed as Child-Pugh scores and portal pressure (PP) measured directly from patients with portal hypertension (PHT) to evaluate the indicative value of abnormal HV waveforms and discuss the cause of abnormal HV waveform.</p> <p>Methods</p> <p>Sixty patients who had been diagnosed with PHT and accepted surgical therapy of portosystemic shunts were investigated. PP was measured intraoperatively. Thirty healthy volunteers with no history of chronic liver disease were enrolled as the control group. HV waveforms were categorized as triphasic, biphasic or monophasic. DI was compared as the quantitative indicator of abnormal HV waveforms. Another two Doppler parameters, PVVel and HAPI were also measured. These Doppler features were compared with PP, Child-Pugh scores and histological changes assessed by liver biopsy.</p> <p>Results</p> <p>In the patient group, the Doppler flow waveforms in the middle HV were triphasic in 31.6%, biphasic in 46.7%, and monophasic in 21.6% of subjects. These figures were 86.7%, 10.0%, and 3.3%, respectively, in healthy subjects. With the flattening of HV waveforms, the HAPI increased significantly (<it>r </it>= 00.438, <it>p </it>< 0.0001), whereas PVVel decreased significantly (<it>r </it>= -0.44, <it>p <</it>0.0001). Blood flow parameters, HAPI, PVVel and HV-waveform changes showed no significant correlations with Child-Pugh scores. The latter showed a significant correlation with PP (<it>r </it>= 0.589, <it>p </it>= 0.044). Changes of HV waveform and DI significantly correlated with PP (<it>r </it>= 0.579, <it>r </it>= 0.473, <it>p <</it>0.0001), and significant correlation between DI and Child-Pugh scores was observed (<it>r </it>= 0.411, <it>p = </it>0.001). PP was significantly different with respect to nodule size (<it>p </it>< 0.05), but HV-waveform changes were not significantly correlated with pathological changes.</p> <p>Conclusion</p> <p>In patients with PHT, a monophasic HV waveform indicates higher portal pressure. Furthermore, quantitative indicator DI can reflect both higher portal pressure and more severe liver dysfunction. Flattening of HV waveforms accompanied by an increase in the HAPI and decrease in PVVel support the hypothesis that histological changes reducing HV compliance be the cause of abnormality of Doppler HV waveforms from the hemodynamic angle.</p

    Tumor angiogenesis after heated lipiodol infusion via the hepatic artery in a rabbit model of VX2 liver cancer.

    Get PDF
    OBJECTIVES: This study aimed to observe the changes in tumor angiogenesis after heated lipiodol (60°C) infusion via the hepatic artery in a rabbit model of VX2 liver cancer. MATERIALS AND METHODS: Twenty rabbits with VX2 hepatic tumors were randomly divided into 2 groups (10 rabbits in each group). Under anesthesia, a trans-catheter hepatic arterial infusion was performed, and lipiodol (37°C; control group) or heated lipiodol (60°C; treated group) was injected into the hepatic arteries of the animals. Then, changes in tumor angiogenesis were assessed using the following markers and methods. 1. Vascular endothelial growth factor receptor (VEGFR) and vascular endothelial growth factor (VEGF) expression levels in the tumor were assessed using western blotting and real-time quantitative polymerase chain reaction (PCR). 2. Proliferating cell nuclear antigen (PCNA) expression in the tumor was assessed through immunohistochemical staining. 3. The morphological changes in tumor vascular endothelial cells were observed using transmission electron microscopy (TEM). RESULTS: VEGFR and VEGF mRNA and protein expression levels were reduced in the treated group compared to the control group. PCNA protein showed reduced expression levels in the treated group compared to the control group. TEM indicated that the endothelial cell endoplasmic reticulum expanded, the chondriosome was swollen, and the endothelial cell microvilli were decreased after heated lipiodol infusion. CONCLUSIONS: The tumor angiogenesis of rabbits with VX2 cancer was inhibited after arterial heated lipiodol infusion compared to lipiodol infusion

    DSA imaging of treated tumors.

    No full text
    <p>The tumors showed hypervascularity in the liver as determined with DSA imaging (A, black arrow). After lipiodol (60°C) injection, the tumors are completely or largely de-vascularized and show on DSA as a lipiodol-filling defect (B, black arrow).</p

    Comparisons of PCNA protein levels between groups after perfusion.

    No full text
    <p>PCNA: control <i>vs.</i> treated group, <i>P</i> = 0.047.</p

    TEM results of treated tumors.

    No full text
    <p>Stimulated by heated (60°C) lipiodol perfusion, TEM results revealed that the tumor endothelial cell microvilli decreased (A, 5000×), the vascular endothelial cell endoplasmic reticulum expanded, and the chondriosome was swollen (B, 10000×).</p

    Expression of VEGFR and VEGF protein and mRNA levels.

    No full text
    <p>The relative changes in VEGFR or VEGF protein and mRNA levels in tumor tissue were detected after treatment in each group (n = 10). A and B. VEGFR and VEGF mRNA expression levels were evaluated using real-time quantitative PCR as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0061583#s2" target="_blank">Materials and Methods</a> section. C and D. VEGFR and VEGF protein levels were detected using Western blot analysis (upper panel). β-actin was detected as a loading control. VEGFR and VEGF expression levels were quantified through densitometry and plotted as the fold change (lower panel). The values are presented as the mean±SD of 3 independent experiments (* <i>P</i><0.05 <i>vs.</i> control group).</p

    Expression of PCNA protein.

    No full text
    <p>As detected through immunohistochemistry, PCNA protein expression was detected mainly in viable VX2 tumor cells (brown; A, control 400<b>×</b>; B, treated 400<b>×</b>).</p

    Triptolide Inhibits Preformed Fibril-Induced Microglial Activation by Targeting the MicroRNA155-5p/SHIP1 Pathway

    No full text
    Evidence suggests that various forms of α-synuclein- (αSyn-) mediated microglial activation are associated with the progression of Parkinson’s disease. MicroRNA-155-5p (miR155-5p) is one of the most important microRNAs and enables a robust inflammatory response. Triptolide (T10) is a natural anti-inflammatory component, isolated from a traditional Chinese herb. The objective of the current study was to identify the role and potential regulatory mechanism of T10 in αSyn-induced microglial activation via the miR155-5p mediated SHIP1 signaling pathway. Mouse primary microglia were exposed to monomers, oligomers, and preformed fibrils (PFFs) of human wild-type αSyn, respectively. The expressions of TNFα and IL-1β, measured by enzyme-linked immunosorbent assay (ELISA) and qPCR, demonstrated that PFFs initiated the strongest immunogenicity in microglia. Application of inhibitors of toll-like receptor (TLR) 1/2, TLR4, and TLR9 indicated that PFFs activated microglia mainly via the NF-κB pathway by binding TLR1/2 and TLR4. Treatment with T10 significantly suppressed PFF-induced microglial activation and attenuated the release of proinflammatory cytokines including TNFα and IL-1β. Levels of IRAK1, TRAF6, IKKα/β, p-IKKα/β, NF-κB, p-NF-κB, PI3K, p-PI3K, t-Akt, p-Akt and SHIP1 were measured via Western blot. Levels of miR155-5p were measured by qPCR. The results demonstrated that SHIP1 acted as a downstream target molecule of miR155-5p. Treatment with T10 did not alter the expression of IRAK1 and TRAF6, but significantly decreased the expression of miR155-5p, resulting in upregulation of SHIP1 and repression of NF-κB activity, suggesting inhibition of inflammation and microglial activation. The protective effects of T10 were abolished by the use of SHIP1 siRNA and its inhibitor, 3AC, and miR155-5p mimics. In conclusion, our results demonstrated that treatment with T10 suppressed microglial activation and attenuated the release of proinflammatory cytokines by suppressing NF-κB activity via targeting the miR155-5p/SHIP1 pathway in PFFs-induced microglial activation
    corecore