37 research outputs found

    Transcriptomic and metabolomic analyses reveal the mechanism of uniconazole inducing hypocotyl dwarfing by suppressing BrbZIP39–BrPAL4 module mediating lignin biosynthesis in flowering Chinese cabbage

    Get PDF
    Uniconazole, a triazole plant growth regulator, is widely used to regulate plant height and prevent the overgrowth of seedlings. However, the underlying molecular mechanism of uniconazole in inhibiting the hypocotyl elongation of seedlings is still largely unclear, and there has been little research on the integration of transcriptomic and metabolomic data to investigate the mechanisms of hypocotyl elonga-tion. Herein we observed that the hypocotyl elongation of flowering Chinese cabbage seedings was significantly inhibited by uniconazole. Interestingly, based on combined transcriptome and metabolome analyses, we found that the “phenylpropanoid biosynthesis” pathway was significantly affected by uniconazole. In this pathway, only one member of the portal enzyme gene family, named BrPAL4, was remarkably downregulated, which was related to lignin biosynthesis. Furthermore, the yeast one-hybrid and dual-luciferase assays showed that BrbZIP39 could directly bind to the promoter region of BrPAL4 and activate its transcript. The virus-induced gene silencing system further demonstrated that BrbZIP39 could positively regulate hypocotyl elongation and the lignin biosynthesis of hypocotyl. Our findings provide a novel insight into the molecular regulatory mechanism of uniconazole inhibiting hypocotyl elongation in flowering Chinese cabbage and confirm, for the first time, that uniconazole decreases lignin content through repressing the BrbZIP39–BrPAL4 module-mediated phenylpropanoid biosynthesis, which leads to the hypocotyl dwarfing of flowering Chinese cabbage seedlings

    An electric molecular motor

    Get PDF
    The computational investigations at California Institute of Technology were supported by National Science Foundation grant no. CBET-2005250 (W.-G.L. and W.A.G.).Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane , in which two cyclobis(paraquat-p-phenylene) (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet , whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by F0F1ATP synthase . The unidirectionality is powered by an oscillating voltage or external modulation of the redox potential . Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound electric molecular motors.Publisher PDFPeer reviewe

    Selective Extraction of C_(70) by a Tetragonal Prismatic Porphyrin Cage

    Get PDF
    Along with the advent of supramolecular chemistry, research on fullerene receptors based on noncovalent bonding interactions has attracted a lot of attention. Here, we present the design and synthesis of a cationic molecular cage: a cyclophane composed of two tetraphenylporphyrins, bridged face-to-face by four viologen units in a rhomboid prismatic manner. The large cavity inside the cage, as well as the favorable donor–acceptor interactions between the porphyrin panels and the fullerene guests, enables the cage to be an excellent fullerene receptor. The 1:1 host–guest complexes formed between the cage and both C_(60) and C_(70) were characterized in solution by HRMS and NMR, UV–vis and fluorescence spectroscopies, and confirmed in the solid state by single-crystal X-ray diffraction analyses. The results from solution studies reveal that the cage has a much stronger binding for C_(70) than for C_(60), resulting in a selective extraction of C_(70) from a C_(60)-enriched fullerene mixture (C_(60)/C_(70) = 10/1), demonstrating the potential of the cage as an attractive receptor for fullerene separation

    Selective Extraction of C_(70) by a Tetragonal Prismatic Porphyrin Cage

    Get PDF
    Along with the advent of supramolecular chemistry, research on fullerene receptors based on noncovalent bonding interactions has attracted a lot of attention. Here, we present the design and synthesis of a cationic molecular cage: a cyclophane composed of two tetraphenylporphyrins, bridged face-to-face by four viologen units in a rhomboid prismatic manner. The large cavity inside the cage, as well as the favorable donor–acceptor interactions between the porphyrin panels and the fullerene guests, enables the cage to be an excellent fullerene receptor. The 1:1 host–guest complexes formed between the cage and both C_(60) and C_(70) were characterized in solution by HRMS and NMR, UV–vis and fluorescence spectroscopies, and confirmed in the solid state by single-crystal X-ray diffraction analyses. The results from solution studies reveal that the cage has a much stronger binding for C_(70) than for C_(60), resulting in a selective extraction of C_(70) from a C_(60)-enriched fullerene mixture (C_(60)/C_(70) = 10/1), demonstrating the potential of the cage as an attractive receptor for fullerene separation

    Effectiveness and safety of anlotinib with or without S-1 in the treatment of patients with advanced hepatocellular carcinoma in a Chinese population: a prospective, phase 2 study

    No full text
    The aim of the study was to observe the safety and efficacy of anlotinib (ANL) alone or combined with S-1 in the first-line treatment of advanced hepatocellular carcinoma (HCC)

    The DnaJ Gene Family in Pepper (Capsicum annuum L.): Comprehensive Identification, Characterization and Expression Profiles

    No full text
    The DnaJ proteins which function as molecular chaperone played critical roles in plant growth and development and response to heat stress (HS) and also called heat shock protein 40 based on molecular weight. However, little was reported on this gene family in pepper. Recently, the release of the whole pepper genome provided an opportunity for identifying putative DnaJ homologous. In this study, a total of 76 putative pepper DnaJ genes (CaDnaJ01 to CaDnaJ76) were identified using bioinformatics methods and classified into five groups by the presence of the complete three domains (J-domain, zinc finger domain, and C-terminal domain). Chromosome mapping suggested that segmental duplication and tandem duplication were occurred in evolution. The multiple stress-related cis-elements were found in the promoter region of these CaDnaJ genes, which indicated that the CaDnaJs might be involved in the process of responding to complex stress conditions. In addition, expression profiles based on RNA-seq showed that the 47 CaDnaJs were expressed in at least one tissue tested. The result implied that they could be involved in the process of pepper growth and development. qRT-PCR analysis found that 80.60% (54/67) CaDnaJs were induced by HS, indicated that they could participated in pepper response to high temperature treatments. In conclusion, all these results would provide a comprehensive basis for further analyzing the function of CaDnaJ members and be also significant for elucidating the evolutionary relationship in pepper

    Obstructive Sleep Apnea and Obesity Are Associated with Hypertension in a Particular Pattern: A Retrospective Study

    No full text
    Obstructive sleep apnea (OSA) and obesity can increase the risk of hypertension, but the combined effects of these two conditions on hypertension are not yet known. We collected the basic characteristics, sleep parameters, and glucose levels of subjects with a polysomnography test and divided them into four groups, according to whether they had severe OSA and obesity or not. The main effects of severe OSA and obesity and the interactions of the two on systolic blood pressure (SBP) and diastolic blood pressure (DBP) levels were detected using analysis of covariance. The association between obesity and severe OSA and abnormal blood pressure and their combined effects were detected with logistic regression. In total, 686 subjects were included. After adjusting for multiple confounding factors, the strong main effects of obesity and severe OSA were detected in the SBP and DBP levels, with no combined effects from the two conditions on SBP or DBP. Obesity was independently associated with the presence of hyper-systolic blood pressure (hyper-SBP) and hypertension, and severe OSA was independently associated with the presence of hyper diastolic blood pressure (hyper-DBP) and hypertension. No effects of the interaction between severe OSA and obesity on the presence of abnormal blood pressure were observed. Both severe OSA and obesity were associated with hypertension, while obesity was closely associated with hyper-SBP, and severe OSA was associated with hyper-DBP. No effects of the interaction between these two on hypertension were observed

    High relative humidity improves leaf burn resistance in flowering Chinese cabbage seedlings cultured in a closed plant factory

    No full text
    Plant factories that ensure the annual production of vegetable crops have sparked much attention. In the present study, thirty types of common vegetable crops from 25 species and eight families, were grown in a multi-layer hydroponic system in a closed-type plant factory to evaluate the adaptive performance. A total of 20 vegetable crops, belonging to 14 species and 4 families, unexpectedly exhibited different degrees of leaf margin necrosis in lower leaves firstly, then the upper leaves gradually. We defined this new physiological disorder as “leaf burn”. It occurred more commonly and severely in cruciferous leafy vegetables. Two different light intensities (150 and 105 ”mol m−2 s−1 photosynthetic photon flux density (PPFD)), three photoperiod conditions (12, 10 and 8 h d−1) and two canopy relative air humidity (RH) (70% and 90% RH) were set to evaluate the suppression effects on leaf burn occurrence in two commercial flowering Chinese cabbage cultivars (‘Sijiu’ and ‘Chixin’), the special cruciferous vegetable in South China. We discovered that changing light conditions did not fully suppress leaf burn occurrence in the cultivar ‘Sijiu’, though lower light intensity and shorter photoperiod partly did. Interestingly, the occurrence of leaf burn was completely restrained by an increased canopy RH from 70% to 90%. Specifically, the low RH-treated seedlings occurred varying degree of leaf burn symptoms, along with rapidly decreased water potential in leaves, while the high RH treatment significantly lessened the drop in leaf water potential, together with increased photosynthetic pigment contents, net photosynthetic rate, stomatal conductance and transpiration rate, decreased leaf stomatal aperture and density, and thus reduced the incidence of leaf burn in ‘Sijiu’ and ‘Chixin’, from 28.89% and 18.52% to zero, respectively. Taken together, high canopy RH may favor maintaining leaf water potential and improving photosynthesis performance, jointly regulating leaf burn incidence and plant growth
    corecore