197 research outputs found

    StrokeGAN: Reducing Mode Collapse in Chinese Font Generation via Stroke Encoding

    Full text link
    The generation of stylish Chinese fonts is an important problem involved in many applications. Most of existing generation methods are based on the deep generative models, particularly, the generative adversarial networks (GAN) based models. However, these deep generative models may suffer from the mode collapse issue, which significantly degrades the diversity and quality of generated results. In this paper, we introduce a one-bit stroke encoding to capture the key mode information of Chinese characters and then incorporate it into CycleGAN, a popular deep generative model for Chinese font generation. As a result we propose an efficient method called StrokeGAN, mainly motivated by the observation that the stroke encoding contains amount of mode information of Chinese characters. In order to reconstruct the one-bit stroke encoding of the associated generated characters, we introduce a stroke-encoding reconstruction loss imposed on the discriminator. Equipped with such one-bit stroke encoding and stroke-encoding reconstruction loss, the mode collapse issue of CycleGAN can be significantly alleviated, with an improved preservation of strokes and diversity of generated characters. The effectiveness of StrokeGAN is demonstrated by a series of generation tasks over nine datasets with different fonts. The numerical results demonstrate that StrokeGAN generally outperforms the state-of-the-art methods in terms of content and recognition accuracies, as well as certain stroke error, and also generates more realistic characters.Comment: 10 pages, our codes and data are available at: https://github.com/JinshanZeng/StrokeGA

    Sensing as a Service in 6G Perceptive Mobile Networks: Architecture, Advances, and the Road Ahead

    Full text link
    Sensing-as-a-service is anticipated to be the core feature of 6G perceptive mobile networks (PMN), where high-precision real-time sensing will become an inherent capability rather than being an auxiliary function as before. With the proliferation of wireless connected devices, resource allocation in terms of the users' specific quality-of-service (QoS) requirements plays a pivotal role to enhance the interference management ability and resource utilization efficiency. In this article, we comprehensively introduce the concept of sensing service in PMN, including the types of tasks, the distinctions/advantages compared to conventional networks, and the definitions of sensing QoS. Subsequently, we provide a unified RA framework in sensing-centric PMN and elaborate on the unique challenges. Furthermore, we present a typical case study named "communication-assisted sensing" and evaluate the performance trade-off between sensing and communication procedure. Finally, we shed light on several open problems and opportunities deserving further investigation in the future

    AdaEvo: Edge-Assisted Continuous and Timely DNN Model Evolution for Mobile Devices

    Full text link
    Mobile video applications today have attracted significant attention. Deep learning model (e.g. deep neural network, DNN) compression is widely used to enable on-device inference for facilitating robust and private mobile video applications. The compressed DNN, however, is vulnerable to the agnostic data drift of the live video captured from the dynamically changing mobile scenarios. To combat the data drift, mobile ends rely on edge servers to continuously evolve and re-compress the DNN with freshly collected data. We design a framework, AdaEvo, that efficiently supports the resource-limited edge server handling mobile DNN evolution tasks from multiple mobile ends. The key goal of AdaEvo is to maximize the average quality of experience (QoE), e.g. the proportion of high-quality DNN service time to the entire life cycle, for all mobile ends. Specifically, it estimates the DNN accuracy drops at the mobile end without labels and performs a dedicated video frame sampling strategy to control the size of retraining data. In addition, it balances the limited computing and memory resources on the edge server and the competition between asynchronous tasks initiated by different mobile users. With an extensive evaluation of real-world videos from mobile scenarios and across four diverse mobile tasks, experimental results show that AdaEvo enables up to 34% accuracy improvement and 32% average QoE improvement.Comment: Accepted by IEEE Transactions on Mobile Computing 202

    AIGC Empowering Telecom Sector White Paper_chinese

    Full text link
    In the global craze of GPT, people have deeply realized that AI, as a transformative technology and key force in economic and social development, will bring great leaps and breakthroughs to the global industry and profoundly influence the future world competition pattern. As the builder and operator of information and communication infrastructure, the telecom sector provides infrastructure support for the development of AI, and even takes the lead in the implementation of AI applications. How to enable the application of AIGC (GPT) and implement AIGC in the telecom sector are questions that telecom practitioners must ponder and answer. Through the study of GPT, a typical representative of AIGC, the authors have analyzed how GPT empowers the telecom sector in the form of scenarios, discussed the gap between the current GPT general model and telecom services, proposed for the first time a Telco Augmented Cognition capability system, provided answers to how to construct a telecom service GPT in the telecom sector, and carried out various practices. Our counterparts in the industry are expected to focus on collaborative innovation around telecom and AI, build an open and shared innovation ecosystem, promote the deep integration of AI and telecom sector, and accelerate the construction of next-generation information infrastructure, in an effort to facilitate the digital transformation of the economy and society
    • …
    corecore