14 research outputs found
The Hair Growth-Promoting Effect of Rumex japonicus
Rumex japonicus Houtt. is traditionally used as a medicinal plant to treat patients suffering from skin disease in Korea. However, the beneficial effect of Rumex japonicus Houtt. on hair growth has not been thoroughly examined. Therefore, the present study aims to investigate the hair growth-promoting effect of Rumex japonicus (RJ) Houtt. root extract using human dermal papilla cells (DPCs), HaCaT cells, and C57BL/6 mice model. RJ induced antiapoptotic and proliferative effects on DPCs and HaCaT cells by increasing Bcl-2/Bax ratio and activating cellular proliferation-related proteins, ERK and Akt. RJ also increased β-catenin via the inhibition of GSK-3β. In C57BL/6 mice model, RJ promoted the anagen induction and maintained its period. Immunohistochemistry analysis demonstrated that RJ upregulated Ki-67 and β-catenin expressions, suggesting that the hair growth effect of RJ may be mediated through the reinforcement of hair cell proliferation. These results provided important insights for the possible mechanism of action of RJ and its potential as therapeutic agent to promote hair growth
Cloning of Metalloproteinase 17 Genes from Oriental Giant Jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae)
We previously demonstrated that Nemopilema nomurai jellyfish venom metalloproteinases (JVMPs) play a key role in the toxicities induced by N. nomurai venom (NnV), including dermotoxicity, cytotoxicity, and lethality. In this study, we identified two full-length JVMP cDNA and genomic DNA sequences: JVMP17-1 and JVMP17-2. The full-length cDNA of JVMP17-1 and 17-2 contains 1614 and 1578 nucleotides (nt) that encode 536 and 525 amino acids, respectively. Putative peptidoglycan (PG) binding, zinc-dependent metalloproteinase, and hemopexin domains were identified. BLAST analysis of JVMP17-1 showed 42, 41, 37, and 37% identity with Hydra vulgaris, Acropora digitifera, Megachile rotundata, and Apis mellifera venom metalloproteinases, respectively. JVMP17-2 shared 38 and 36% identity with H. vulgaris and A. digitifera, respectively. Alignment results of JVMP17-1 and 17-2 with other metalloproteinases suggest that the PG domain, the tissue inhibitor of metalloproteinase (TIMP)-binding surfaces, active sites, and metal (ion)-binding sites are highly conserved. The present study reports the gene cloning of metalloproteinase enzymes from jellyfish species for the first time. We hope these results can expand our knowledge of metalloproteinase components and their roles in the pathogenesis of jellyfish envenomation
Proteomic Investigation to Identify Anticancer Targets of Nemopilema nomurai Jellyfish Venom in Human Hepatocarcinoma HepG2 Cells
Nemopilema nomurai is a giant jellyfish that blooms in East Asian seas. Recently, N. nomurai venom (NnV) was characterized from a toxicological and pharmacological point of view. A mild dose of NnV inhibits the growth of various kinds of cancer cells, mainly hepatic cancer cells. The present study aims to identify the potential therapeutic targets and mechanism of NnV in the growth inhibition of cancer cells. Human hepatocellular carcinoma (HepG2) cells were treated with NnV, and its proteome was analyzed using two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS). The quantity of twenty four proteins in NnV-treated HepG2 cells varied compared to non-treated control cells. Among them, the amounts of fourteen proteins decreased and ten proteins showed elevated levels. We also found that the amounts of several cancer biomarkers and oncoproteins, which usually increase in various types of cancer cells, decreased after NnV treatment. The representative proteins included proliferating cell nuclear antigen (PCNA), glucose-regulated protein 78 (GRP78), glucose-6-phosphate dehydrogenase (G6PD), elongation factor 1γ (EF1γ), nucleolar and spindle-associated protein (NuSAP), and activator of 90 kDa heat shock protein ATPase homolog 1 (AHSA1). Western blotting also confirmed altered levels of PCNA, GRP78, and G6PD in NnV-treated HepG2 cells. In summary, the proteomic approach explains the mode of action of NnV as an anticancer agent. Further characterization of NnV may help to unveil novel therapeutic agents in cancer treatment
In vitro characterization of jellyfish venom fibrin(ogen)olytic enzymes from Nemopilema nomurai
Abstract Background Because jellyfish are capable of provoking envenomation in humans, they are considered hazardous organisms. Although the effects of their toxins are a matter of concern, information on the venom components, biological activity and pathological mechanisms are still scarce. Therefore, the aim of the present study was to investigate a serine protease component of Nemopilema nomurai jellyfish venom (NnV) and unveil its characteristics. Methods To determine the relationship between fibrinolytic activity of NnV and the serine protease, fibrin zymography was performed using metalloprotease and serine protease inhibitors. The biochemical characterization of serine proteases of NnV were determined by the amidolytic assay. Fractions with fibrinolytic activity were obtained by DEAE cation exchange column. Results NnV displayed fibrinolytic activities with molecular masses of approximately 70, 35, 30, and 28 kDa. The fibrinolytic activity of NnV was completely obliterated by phenylmethylsulfonyl fluoride, a prototype serine protease inhibitor. Based on amidolytic assays using chromogenic substrates specific for various kinds of serine proteases, NnV predominantly manifested a chymotrypsin-like feature. Its activity was completely eliminated at low pH ( 37 °C). Some metal ions (Co2+, Cu2+, Zn2+ and Ni2+) strongly suppressed its fibrinolytic activity, while others (Ca2+ and Mg2+) failed to do so. Isolation of a serine protease with fibrionolytic activity from NnV revealed that only p3 showed the fibrinolytic activity, which was completely inhibited by PMSF. Conclusion The present study showed that N. nomurai jellyfish venom has a chymotrypsin-like serine protease with fibrinolytic activity. Such information might be useful for developing clinical management of jellyfish envenomation and pharmacological agents with therapeutic potential for thrombotic diseases in the future
Nemopilema nomurai Jellyfish venom treatment leads to alterations in rat cardiomyocytes proteome
This data article restrains data associated to the Choudhary et al. [1]. Nemopilema nomurai Jellyfish venom (NnV) can lead to cardiac toxicity. Here we analyzed the effect of NnV on rat cardiomyocytes cell line H9c2 at the proteome level using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). This analysis resulted in 34 proteins with differential expression. Here we provide the dataset for the proteins with amplified or reduced level as compare to control
Cloning of Metalloproteinase 17 Genes from Oriental Giant Jellyfish <i>Nemopilema nomurai</i> (Scyphozoa: Rhizostomeae)
We previously demonstrated that Nemopilema nomurai jellyfish venom metalloproteinases (JVMPs) play a key role in the toxicities induced by N. nomurai venom (NnV), including dermotoxicity, cytotoxicity, and lethality. In this study, we identified two full-length JVMP cDNA and genomic DNA sequences: JVMP17-1 and JVMP17-2. The full-length cDNA of JVMP17-1 and 17-2 contains 1614 and 1578 nucleotides (nt) that encode 536 and 525 amino acids, respectively. Putative peptidoglycan (PG) binding, zinc-dependent metalloproteinase, and hemopexin domains were identified. BLAST analysis of JVMP17-1 showed 42, 41, 37, and 37% identity with Hydra vulgaris, Acropora digitifera, Megachile rotundata, and Apis mellifera venom metalloproteinases, respectively. JVMP17-2 shared 38 and 36% identity with H. vulgaris and A. digitifera, respectively. Alignment results of JVMP17-1 and 17-2 with other metalloproteinases suggest that the PG domain, the tissue inhibitor of metalloproteinase (TIMP)-binding surfaces, active sites, and metal (ion)-binding sites are highly conserved. The present study reports the gene cloning of metalloproteinase enzymes from jellyfish species for the first time. We hope these results can expand our knowledge of metalloproteinase components and their roles in the pathogenesis of jellyfish envenomation
Evaluation of Phototoxic and Skin Sensitization Potentials of PLA 2 -Free Bee Venom
Bee venom (BV) from honey bee (Apis mellifera L.) has been used in oriental medicine and cosmetic ingredients because of its diverse pharmacological activities. In many studies, among BV components, phospholipase A 2 (PLA 2 ) is known as a major player in BV-induced allergic reaction. Therefore, we removed PLA 2 from BV using ultrafiltration and then investigated in vitro phototoxicity and in vivo skin sensitization of PLA 2 -free BV (PBV) in comparison with regular BV. The 3T3 neutral red uptake phototoxicity assay can be appropriated to identify the phototoxic effect of a test substance upon the exposure of ultraviolet A. Chlorpromazine, a positive control, showed high levels of photoirritation factor and mean photo effect values, while BV and PBV had less of these values. Local lymph node assay is an alternative method to evaluate skin sensitization potential of chemicals. BALB/c mice were treated with p-phenylenediamine (PPD, positive control), BV, or PBV. In all of PPD concentrations, stimulation indexes (SI) as sensitizing potential of chemicals were ≥1.6, determined to be sensitizer, while SI levels of BV and PBV were below 1.6. Thus, based on these findings, we propose that both BV and PBV are nonphototoxic compounds and nonsensitizers
Evaluation of Phototoxic and Skin Sensitization Potentials of PLA2-Free Bee Venom
Bee venom (BV) from honey bee (Apis mellifera L.) has been used in oriental medicine and cosmetic ingredients because of its diverse pharmacological activities. In many studies, among BV components, phospholipase A2 (PLA2) is known as a major player in BV-induced allergic reaction. Therefore, we removed PLA2 from BV using ultrafiltration and then investigated in vitro phototoxicity and in vivo skin sensitization of PLA2-free BV (PBV) in comparison with regular BV. The 3T3 neutral red uptake phototoxicity assay can be appropriated to identify the phototoxic effect of a test substance upon the exposure of ultraviolet A. Chlorpromazine, a positive control, showed high levels of photoirritation factor and mean photo effect values, while BV and PBV had less of these values. Local lymph node assay is an alternative method to evaluate skin sensitization potential of chemicals. BALB/c mice were treated with p-phenylenediamine (PPD, positive control), BV, or PBV. In all of PPD concentrations, stimulation indexes (SI) as sensitizing potential of chemicals were ≥1.6, determined to be sensitizer, while SI levels of BV and PBV were below 1.6. Thus, based on these findings, we propose that both BV and PBV are nonphototoxic compounds and nonsensitizers
Cloning a Chymotrypsin-Like 1 (CTRL-1) Protease cDNA from the Jellyfish Nemopilema nomurai
An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His69, Asp117, and Ser216. The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5′ donor splice (GT) and 3′ acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai