121 research outputs found

    Reduced Order Models for Prediction of Groundwater Quality Impacts from CO2 and Brine Leakage

    Get PDF
    AbstractA careful assessment of the risk associated with geologic CO2 storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO2 and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO2 leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models.In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO2 and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO2 storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO2 storage projects

    Geologic CO2 storage using pre-injection brine production in tandem reservoirs: A strategy for improved storage performance and enhanced water recovery

    Get PDF
    Deployment barriers for CO2 capture, utilization, and storage (CCUS) in saline reservoirs can be grouped under three categories: (1) net cost (after accounting for utilization benefits); (2) water intensity of CO2 capture, and (3) uncertainty about storage capacity and permanence. The third category is often considered to be the most challenging. Overpressure, which is fluid pressure that exceeds the original reservoir pressure due to CO2 injection, is the limiting metric for storage capacity and permanence because it drives key physical risks: induced seismicity, caprock fracture, and CO2 leakage. Variables that control overpressure include: (1) the quantity of CO2 and the rate at which it is injected, (2) the size of the reservoir storage compartment, and (3) reservoir permeability. Geologic surveys, geologic logs, and core data from exploration wells provide information that can be used to estimate the size and permeability of the reservoir compartment, but large uncertainties will only be narrowed after there is operational experience with moving large quantities of fluid to move into and/or out of the reservoir. Unlike CCUS applied to CO2 Enhanced Oil Recovery (CO2-EOR) in mature oil fields, CCUS in a saline reservoir will typically (a) have less geologic information and little or no production and injection history to estimate how much CO2 can be safely and permanently stored and (b) not have the advantage of depleted reservoir pressure prior to CO2 injection. Numerous studies have evaluated strategies for managing CO2 storage reservoirs by producing brine to reduce the pressure buildup due to CO2 injection. Most of these studies assume that separate injection and production wells will be used and that brine production will begin during or after the CO2 injection phase. We present a strategy where brine production begins prior to the CO2 injection phase, using the wells that will subsequently be used for CO2 injection. In this strategy, all wells are initially used for exploration and monitoring and then to produce brine prior to injecting CO2. Our strategy also includes the option of using reservoirs in tandem, including: CO2-storage reservoirs: due to their high seal integrity, these are preferred for CO2 storage. Brine produced from these reservoirs may or may not be directly used for water generation. Brine-storage reservoirs: these are used to store brine and/or residual brine and, with treatable brine composition, to produce brine for water generation. For zero net injection, high seal integrity is not required. This strategy has several advantages. First, pressure drawdown observed during brine production mirrors the pressure buildup during CO2 injection, providing necessary data to directly estimate reservoir storage capacity before any CO2 is injected. Second, pressure drawdown is greatest where CO2 will be injected, which is more efficient both on a per well basis and per mass of removed brine basis. Pre-injection brine production in saline reservoirs shares two key advantages of CO2-EOR: (a) greater knowledge about reservoir properties and storage capacity and (b) depleted reservoir pressure, which increases storage capacity. A third advantage is that the flexibility of our tandem-reservoir approach can be used to improve the economics of Enhanced Water Recovery (EWR). The primary metric for selecting a brine-storage reservoir is for its brine composition to be more amenable for treatment for beneficial uses, such as saline cooling water or water generated through desalination. Where applicable, EWR will reduce the water intensity of CCUS, which is particularly valuable in water-stressed regions. For a range of tandem-reservoir scenarios, we assess the influence of CO2-storage and brine-storage reservoir properties (e.g., reservoir compartment size, seal permeability, and salinity) on reservoir pressure management and EWR. We also illustrate how pre-injection brine production can be used as a tool for site selection and characterization, including assessments of CO2 storage capacity and permanence. This work was sponsored by the USDOE Fossil Energy, National Energy Technology Laboratory, managed by Traci Rodosta and Andrea McNemar. This work was performed under the auspices of the USDOE by LLNL under contract DE-AC52-07NA27344

    Equilibrium mechanism between dc voltage and ac frequency for ac–dc interlinking converters

    Get PDF
    The equilibrium between dc bus voltage and ac bus frequency (Udc-f equilibrium) is the algorithm core of unified control strategies for ac-dc interlinking converters (ILCs), because the equilibrium implements certain mechanism. However, what the mechanism is has not been explicitly explored, which hinders further studies on unified control. This paper reveals that the state-space model of a Udc-f equilibrium controlled ILC is highly similar to that of a shaft-to-shaft machines system. Hence a detailed mechanism is discovered and named “virtual shaft-to-shaft machine (VSSM)” mechanism. A significant feature of VSSM mechanism is self-synchronization without current sampling or ac voltage sampling

    Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa

    Get PDF
    Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process

    Integrated Geothermal-CO2 Reservoir Systems: Reducing Carbon Intensity through Sustainable Energy Production and Secure CO2 Storage

    Get PDF
    AbstractLarge-scale geologic CO2 storage (GCS) can be limited by overpressure, while geothermal energy production is often limited by pressure depletion. We investigate how synergistic integration of these complementary systems may enhance the viability of GCS by relieving overpressure, which reduces pore-space competition, the Area of Review, and the risks of CO2 leakage and induced seismicity, and by producing geothermal energy and water, which can defray parasitic energy and water costs of CO2 capture

    Diagnostic performance and clinical impact of blood metagenomic next-generation sequencing in ICU patients suspected monomicrobial and polymicrobial bloodstream infections

    Get PDF
    IntroductionEarly and effective application of antimicrobial medication has been evidenced to improve outcomes of patients with bloodstream infection (BSI). However, conventional microbiological tests (CMTs) have a number of limitations that hamper a rapid diagnosis.MethodsWe retrospectively collected 162 cases suspected BSI from intensive care unit with blood metagenomics next-generation sequencing (mNGS) results, to comparatively evaluate the diagnostic performance and the clinical impact on antibiotics usage of mNGS.Results and discussionResults showed that compared with blood culture, mNGS detected a greater number of pathogens, especially for Aspergillus spp, and yielded a significantly higher positive rate. With the final clinical diagnosis as the standard, the sensitivity of mNGS (excluding viruses) was 58.06%, significantly higher than that of blood culture (34.68%, P<0.001). Combing blood mNGS and culture results, the sensitivity improved to 72.58%. Forty-six patients had infected by mixed pathogens, among which Klebsiella pneumoniae and Acinetobacter baumannii contributed most. Compared to monomicrobial, cases with polymicrobial BSI exhibited dramatically higher level of SOFA, AST, hospitalized mortality and 90-day mortality (P<0.05). A total of 101 patients underwent antibiotics adjustment, among which 85 were adjusted according to microbiological results, including 45 cases based on the mNGS results (40 cases escalation and 5 cases de-escalation) and 32 cases on blood culture. Collectively, for patients suspected BSI in critical condition, mNGS results can provide valuable diagnostic information and contribute to the optimizing of antibiotic treatment. Combining conventional tests with mNGS may significantly improve the detection rate for pathogens and optimize antibiotic treatment in critically ill patients with BSI

    Carbon monoxide-Releasing Molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic ischemia-reperfusion injury (I/Ri) is a serious complication occurring during liver surgery that may lead to liver failure. Hepatic I/Ri induces formation of reactive oxygen species, hepatocyte apoptosis, and release of pro-inflammatory cytokines, which together causes liver damage and organ dysfunction. A potential strategy to alleviate hepatic I/Ri is to exploit the potent anti-inflammatory and cytoprotective effects of carbon monoxide (CO) by application of so-called CO-releasing molecules (CORMs). Here, we assessed whether CO released from CORM-2 protects against hepatic I/Ri in a rat model.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly assigned into four groups (n = 10). Sham group underwent a sham operation and received saline. I/R group underwent hepatic I/R procedure by partial clamping of portal structures to the left and median lobes with a microvascular clip for 60 minutes, yielding ~70% hepatic ischemia and subsequently received saline. CORM-2 group underwent the same procedure and received 8 mg/kg of CORM-2 at time of reperfusion. iCORM-2 group underwent the same procedure and received iCORM-2 (8 mg/kg), which does not release CO. Therapeutic effects of CORM-2 on hepatic I/Ri was assessed by measuring serum damage markers AST and ALT, liver histology score, TUNEL-scoring of apoptotic cells, NFkB-activity in nuclear liver extracts, serum levels of pro-inflammatory cytokines TNF-α and IL-6, and hepatic neutrophil infiltration.</p> <p>Results</p> <p>A single systemic infusion with CORM-2 protected the liver from I/Ri as evidenced by a reduction in serum AST/ALT levels and an improved liver histology score. Treatment with CORM-2 also up-regulated expression of the anti-apoptotic protein Bcl-2, down-regulated caspase-3 activation, and significantly reduced the levels of apoptosis after I/Ri. Furthermore, treatment with CORM-2 significantly inhibited the activity of the pro-inflammatory transcription factor NF-κB as measured in nuclear extracts of liver homogenates. Moreover, CORM-2 treatment resulted in reduced serum levels of pro-inflammatory cytokines TNF-α and IL-6 and down-regulation of the adhesion molecule ICAM-1 in the endothelial cells of liver. In line with these findings, CORM-2 treatment reduced the accumulation of neutrophils in the liver upon I/Ri. Similar treatment with an inactive variant of CORM-2 (iCORM-2) did not have any beneficial effect on the extent of liver I/Ri.</p> <p>Conclusions</p> <p>CORM-2 treatment at the time of reperfusion had several distinct beneficial effects on severity of hepatic I/Ri that may be of therapeutic value for the prevention of tissue damage as a result of I/Ri during hepatic surgery.</p
    • …
    corecore