70 research outputs found

    Independent directors’ board networks and controlling shareholders’ tunneling behavior

    Get PDF
    AbstractAs one of the channels by which board directors build important relationships, board networks can affect the governance role of independent directors. Defining director board networks as their connections based on direct ties they establish when serving on at least one common board, this paper explores the role of the network centrality of independent directors in restraining tunneling behavior by controlling shareholders in the Chinese capital market. Our empirical evidence shows that tunneling behavior by controlling shareholders is negatively related to the network centrality of independent directors and that this relationship is stronger when non-operating fund occupation is used as the measure of tunneling. The results of our study show that board networks can help independent directors to restrain tunneling behavior by large shareholders, which plays a positive role in corporate governance

    Entity-Aspect-Opinion-Sentiment Quadruple Extraction for Fine-grained Sentiment Analysis

    Full text link
    Product reviews often contain a large number of implicit aspects and object-attribute co-existence cases. Unfortunately, many existing studies in Aspect-Based Sentiment Analysis (ABSA) have overlooked this issue, which can make it difficult to extract opinions comprehensively and fairly. In this paper, we propose a new task called Entity-Aspect-Opinion-Sentiment Quadruple Extraction (EASQE), which aims to hierarchically decompose aspect terms into entities and aspects to avoid information loss, non-exclusive annotations, and opinion misunderstandings in ABSA tasks. To facilitate research in this new task, we have constructed four datasets (Res14-EASQE, Res15-EASQE, Res16-EASQE, and Lap14-EASQE) based on the SemEval Restaurant and Laptop datasets. We have also proposed a novel two-stage sequence-tagging based Trigger-Opinion framework as the baseline for the EASQE task. Empirical evaluations show that our Trigger-Opinion framework can generate satisfactory EASQE results and can also be applied to other ABSA tasks, significantly outperforming state-of-the-art methods. We have made the four datasets and source code of Trigger-Opinion publicly available to facilitate further research in this area

    Glycosphingolipid GM3 is Indispensable for Dengue Virus Genome Replication

    Get PDF
    Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease of humans worldwide. Glycosphingolipids (GSLs) are involved in virus infection by regulating various steps of viral-host interaction. However, the distinct role of GSLs during DENV infection remains unclear. In this study, we used mouse melanoma B16 cells and their GSL-deficient mutant counterpart GM95 cells to study the influence of GSLs on DENV infection. Surprisingly, GM95 cells were highly resistant to DENV infection compared with B16 cells. Pretreatment of B16 cells with synthetase inhibitor of GM3, the most abundant GSLs in B16 cells, or silencing GM3 synthetase T3GAL5, significantly inhibited DENV infection. DENV attachment and endocytosis were not impaired in GM95 cells, but DENV genome replication was obviously inhibited in GM95 cells compared to B16 cells. Furthermore, GM3 was colocalized with DENV viral replication complex on endoplasmic reticulum (ER) inside the B16 cells. Finally, GM3 synthetase inhibitor significantly reduced the mortality rate of suckling mice that challenged with DENV by impairing the viral replication in mouse brain. Taken together, these data indicated that GM3 was not required for DENV attachment and endocytosis, however, essential for viral genome replication. Targeting GM3 could be a novel strategy to inhibit DENV infection

    Mathematical modelling for multiproduct EPQ problem featuring delayed differentiation, expedited rate, and scrap

    Get PDF
    The client requirements of present-day markets emphasize product quality, variety, and rapid response. To gain competitive advantages in marketplaces and meet customer needs, manufacturers today seek the most economical and fastest fabrication schemes and strategies to produce their various goods, especially when commonality exists within these multiple end products. Inspired by the above viewpoints, this study uses a mathematical modelling approach for solving a multiproduct economic production quantity (EPQ) problem featuring scrap, delayed differentiation, and expedited rate on the fabrication of the common part. We build a two-stage multiproduct fabrication scheme. Stage one uses an accelerated rate to produce all necessary common parts for multi-item to shorten its uptime, while stage two fabricates finished products sequentially using a rotation cycle rule. Inevitable random scraps produced in both stages are identified and removed to achieve the anticipated quality. We determined the optimal cost-minimization operating cycle length and used a numerical example to show our model’s capability and to explore collective and individual impacts of scrap, expedited-rate, and postponement strategies on various performances of the studied problem (such as uptime of common part, utilization, rotation cycle time, total system cost, and individual cost contributor, etc.) Our model can offer an optimization solution and in-depth managerial insights for fabrication and operations planning in a wide variety of present-day industries, such as automotive, household goods, clothing, etc

    A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily

    Full text link
    Large Language Models (LLMs), such as ChatGPT and GPT-4, are designed to provide useful and safe responses. However, adversarial prompts known as 'jailbreaks' can circumvent safeguards, leading LLMs to generate harmful content. Exploring jailbreak prompts can help to better reveal the weaknesses of LLMs and further steer us to secure them. Unfortunately, existing jailbreak methods either suffer from intricate manual design or require optimization on another white-box model, compromising generalization or jailbreak efficiency. In this paper, we generalize jailbreak prompt attacks into two aspects: (1) Prompt Rewriting and (2) Scenario Nesting. Based on this, we propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts. Extensive experiments demonstrate that ReNeLLM significantly improves the attack success rate while greatly reducing the time cost compared to existing baselines. Our study also reveals the inadequacy of current defense methods in safeguarding LLMs. Finally, we offer detailed analysis and discussion from the perspective of prompt execution priority on the failure of LLMs' defense. We hope that our research can catalyze both the academic community and LLMs vendors towards the provision of safer and more regulated Large Language Models

    FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for Task-Oriented Dialogue

    Full text link
    Pre-trained language models based on general text enable huge success in the NLP scenario. But the intrinsical difference of linguistic patterns between general text and task-oriented dialogues makes existing pre-trained language models less useful in practice. Current dialogue pre-training methods rely on a contrastive framework and face the challenges of both selecting true positives and hard negatives. In this paper, we propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context using a self-training framework. Our intuition is that a good dialogue representation both learns local context information and predicts future information. Extensive experiments on diverse downstream dialogue tasks demonstrate the effectiveness of our model, especially the generalization, robustness, and learning discriminative dialogue representations capabilities.Comment: ACL 2023 Main Conferenc

    Exchanging-based Multimodal Fusion with Transformer

    Full text link
    We study the problem of multimodal fusion in this paper. Recent exchanging-based methods have been proposed for vision-vision fusion, which aim to exchange embeddings learned from one modality to the other. However, most of them project inputs of multimodalities into different low-dimensional spaces and cannot be applied to the sequential input data. To solve these issues, in this paper, we propose a novel exchanging-based multimodal fusion model MuSE for text-vision fusion based on Transformer. We first use two encoders to separately map multimodal inputs into different low-dimensional spaces. Then we employ two decoders to regularize the embeddings and pull them into the same space. The two decoders capture the correlations between texts and images with the image captioning task and the text-to-image generation task, respectively. Further, based on the regularized embeddings, we present CrossTransformer, which uses two Transformer encoders with shared parameters as the backbone model to exchange knowledge between multimodalities. Specifically, CrossTransformer first learns the global contextual information of the inputs in the shallow layers. After that, it performs inter-modal exchange by selecting a proportion of tokens in one modality and replacing their embeddings with the average of embeddings in the other modality. We conduct extensive experiments to evaluate the performance of MuSE on the Multimodal Named Entity Recognition task and the Multimodal Sentiment Analysis task. Our results show the superiority of MuSE against other competitors. Our code and data are provided at https://github.com/RecklessRonan/MuSE

    Decoupling Pseudo Label Disambiguation and Representation Learning for Generalized Intent Discovery

    Full text link
    Generalized intent discovery aims to extend a closed-set in-domain intent classifier to an open-world intent set including in-domain and out-of-domain intents. The key challenges lie in pseudo label disambiguation and representation learning. Previous methods suffer from a coupling of pseudo label disambiguation and representation learning, that is, the reliability of pseudo labels relies on representation learning, and representation learning is restricted by pseudo labels in turn. In this paper, we propose a decoupled prototype learning framework (DPL) to decouple pseudo label disambiguation and representation learning. Specifically, we firstly introduce prototypical contrastive representation learning (PCL) to get discriminative representations. And then we adopt a prototype-based label disambiguation method (PLD) to obtain pseudo labels. We theoretically prove that PCL and PLD work in a collaborative fashion and facilitate pseudo label disambiguation. Experiments and analysis on three benchmark datasets show the effectiveness of our method.Comment: Accepted at ACL2023 main conferenc

    APP: Adaptive Prototypical Pseudo-Labeling for Few-shot OOD Detection

    Full text link
    Detecting out-of-domain (OOD) intents from user queries is essential for a task-oriented dialogue system. Previous OOD detection studies generally work on the assumption that plenty of labeled IND intents exist. In this paper, we focus on a more practical few-shot OOD setting where there are only a few labeled IND data and massive unlabeled mixed data that may belong to IND or OOD. The new scenario carries two key challenges: learning discriminative representations using limited IND data and leveraging unlabeled mixed data. Therefore, we propose an adaptive prototypical pseudo-labeling (APP) method for few-shot OOD detection, including a prototypical OOD detection framework (ProtoOOD) to facilitate low-resource OOD detection using limited IND data, and an adaptive pseudo-labeling method to produce high-quality pseudo OOD\&IND labels. Extensive experiments and analysis demonstrate the effectiveness of our method for few-shot OOD detection

    PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language Models

    Full text link
    While transformer-based pre-trained language models (PLMs) have dominated a number of NLP applications, these models are heavy to deploy and expensive to use. Therefore, effectively compressing large-scale PLMs becomes an increasingly important problem. Quantization, which represents high-precision tensors with low-bit fix-point format, is a viable solution. However, most existing quantization methods are task-specific, requiring customized training and quantization with a large number of trainable parameters on each individual task. Inspired by the observation that the over-parameterization nature of PLMs makes it possible to freeze most of the parameters during the fine-tuning stage, in this work, we propose a novel ``quantize before fine-tuning'' framework, PreQuant, that differs from both quantization-aware training and post-training quantization. PreQuant is compatible with various quantization strategies, with outlier-aware parameter-efficient fine-tuning incorporated to correct the induced quantization error. We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5. We also provide an empirical investigation into the workflow of PreQuant, which sheds light on its efficacy.Comment: Findings of ACL202
    • …
    corecore