4 research outputs found

    The gross view of sciatic nerve regeneration with different nerve grafts.

    No full text
    <p>The change in sciatic nerve regeneration over time (A). The normal sciatic nerve was explored, a 1-cm gap was removed, and the nerve was bridged with different nerve grafts. Examples of regenerated sciatic nerves from plain SF/collagen scaffold, TENC, autograft and control rats (B).</p

    CMAP examinations 12 weeks after surgery.

    No full text
    <p>Representative data were recorded on the operated side of animals with plain SF/collagen scaffolds (A), TENCs (B), and autografts (C), and on the contralateral non-operated side (D). Histograms show the CMAP amplitude (E) and the motor nerve conduction velocity (F). Data are expressed as the mean ± SD. #p < 0.05 compared with the Scaffold group, and *p < 0.05 compared with the normal side.</p

    Morphology of the regenerated myelinated nerve fibers.

    No full text
    <p>Transmission electron micrographs of the regenerated sciatic nerve (A: a1, a2). Micrographs of toluidine blue staining for the regenerated sciatic nerve under a phase contrast microscope (A: a3). The Scaffold group shows small and poorly developed regenerating clusters composed of thin, dispersed myelinated nerve fibers or non-myelinated nerve fibers. For the TENC group, the regenerated myelinated fibers dispersed densely in clusters and were surrounded by a clear, electron-dense myelin sheath and perfect basal membrane of Schwann cells. Scale bar, 2 (a1), 0.5 (a2), and 20 μm (a3). Histograms showing the number of myelin sheath layers (B) and the thickness of the myelin sheaths (C). Data are expressed as the mean ± SD. *p < 0.05 compared with the Scaffold group.</p

    Morphology and flow cytometric analysis of ADSCs.

    No full text
    <p>Morphology of ADSCs under phase contrast microscopy (A). Scale bar, 100 μm (A). Flow cytometric analysis of ADSCs (B).</p
    corecore