12 research outputs found

    Effect of Dibutyltin Dilaurate on Triglyceride Metabolism through the Inhibition of the mTOR Pathway in Human HL7702 Liver Cells

    No full text
    Dibutyltin dilaurate (DBTD) has multiple applications in daily life. However, DBTD is easily deposited in the liver and affects liver functions. This study was designed to explore the effects of DBTD on triglyceride metabolism in human normal hepatocyte HL7702 cells. Our results showed that the intracellular fat contents were dose-dependently decreased by DBTD. The expression of lipolysis genes and proteins were elevated while the lipogenesis genes and proteins were diminished by DBTD. The phosphorylation levels of ribosomal S6 kinase 1 were reduced by both rapamycin and DBTD, indicating that the mTOR pathway was suppressed possibly. The decreased sterol regulatory element-binding protein 1C (SREBP1C) transcription levels, as well as the increased peroxisome proliferator-activated receptor alpha (PPARα) transcription levels, caused by rapamycin and DBTD corresponded to the inactive mTOR pathway. In conclusion, it was possible that DBTD reduced the intracellular triglyceride through depressing the mTOR pathway and affecting its downstream transcription factors

    Inverse engineering for robust state transport along a spin chain via low-energy subspaces

    No full text
    Quantum state transfer (QST) plays a central role in the field of quantum computation and communication, but its quality will be deteriorated by the ubiquitous variations and noise in quantum systems. Here we propose robust and nonadiabatic protocols for transmitting quantum state across a strongly coupled spin chain, especially in the presence of unwanted disorders in the couplings. To this end, we approximately map the low-energy subspaces of the odd-size Heisenberg chain to a two-level system, and derive the sensitivity of the final fidelity with respect to systematic deviations or time-varying fluctuations. Subsequently, leveraging the flexibility of the inverse-engineering technique, we optimize the state-transfer robustness concerning these perturbations individually. The resulting schemes allow for more stable QST than the original accelerated schemes and only require manipulating the two boundary couplings instead of the whole system, which open up the possibility of fast and robust information transfer in spin-based quantum systems
    corecore