37 research outputs found

    Study on Thermal Properties and Mechanical Properties of Short-cut Polyimide-Fiber Reinforced Polyphenyl Sulfone Composites

    Get PDF
    In order to increase the thermal stability and mechanical property of PPSU, two different polyimide (PI) short cut fibers reinforced polyphenyl sulfone (PPSU) composites were prepared by melt extrusion using a threescrew extruder. In addition, the effects of fiber lengths on thermal stability, heat resistance and mechanical properties of the composites was studied. The results indicate that the addition of polyimide chopped fiber can greatly improve the heat resistance of the composites. Comparing with PPSU, with the increasing of fiber content, the heat deformation temperature (HDT) of composites increased from 205 °C to 229 °C, but the addition of polyimide fiber has limited effect on the thermal stability of the composites. Meanwhile, the addition of polyimide chopped fiber can also improve the mechanical properties of the composites. Compared with PPSU, the tensile strength of composites can be increased by 102%, and the bending strength can be raised by 117%

    Virtual reality-induced motor function of the upper extremity and brain activation in stroke: study protocol for a randomized controlled trial

    Get PDF
    BackgroundThe benefits of virtual reality (VR)-based rehabilitation were reported in patients after stroke, but there is insufficient evidence about how VR promotes brain activation in the central nervous system. Hence, we designed this study to explore the effects of VR-based intervention on upper extremity motor function and associated brain activation in stroke patients.Methods/designIn this single-center, randomized, parallel-group clinical trial with a blinded assessment of outcomes, a total of 78 stroke patients will be assigned randomly to either the VR group or the control group. All stroke patients who have upper extremity motor deficits will be tested with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and clinical evaluation. Clinical assessment and fMRI will be performed three times on each subject. The primary outcome is the change in performance on the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE). Secondary outcomes are functional independence measure (FIM), Barthel Index (BI), grip strength, and changes in the blood oxygenation level-dependent (BOLD) effect in the ipsilesional and contralesional primary motor cortex (M1) on the left and right hemispheres assessed with resting-state fMRI (rs-fMRI), task-state fMRI (ts-fMRI), and changes in EEG at the baseline and weeks 4 and 8.DiscussionThis study aims to provide high-quality evidence for the relationship between upper extremity motor function and brain activation in stroke. In addition, this is the first multimodal neuroimaging study that explores the evidence for neuroplasticity and associated upper motor function recovery after VR in stroke patients.Clinical trial registrationChinese Clinical Trial Registry, identifier: ChiCTR2200063425

    Study on Thermal Properties and Mechanical Properties of Short-cut Polyimide-Fiber Reinforced Polyphenyl Sulfone Composites

    No full text
    In order to increase the thermal stability and mechanical property of PPSU, two different polyimide (PI) short cut fibers reinforced polyphenyl sulfone (PPSU) composites were prepared by melt extrusion using a threescrew extruder. In addition, the effects of fiber lengths on thermal stability, heat resistance and mechanical properties of the composites was studied. The results indicate that the addition of polyimide chopped fiber can greatly improve the heat resistance of the composites. Comparing with PPSU, with the increasing of fiber content, the heat deformation temperature (HDT) of composites increased from 205 °C to 229 °C, but the addition of polyimide fiber has limited effect on the thermal stability of the composites. Meanwhile, the addition of polyimide chopped fiber can also improve the mechanical properties of the composites. Compared with PPSU, the tensile strength of composites can be increased by 102%, and the bending strength can be raised by 117%

    Multi-Hand Gesture Recognition Using Automotive FMCW Radar Sensor

    No full text
    With the development of human–computer interaction(s) (HCI), hand gestures are playing increasingly important roles in our daily lives. With hand gesture recognition (HGR), users can play virtual games together, control the smart equipment, etc. As a result, this paper presents a multi-hand gesture recognition system using automotive frequency modulated continuous wave (FMCW) radar. Specifically, we first constructed the range-Doppler map (RDM) and range-angle map (RAM), and then suppressed the spectral leakage, and dynamic and static interferences. Since the received echo signals with multi-hand gestures are mixed together, we propose a spatiotemporal path selection algorithm to separate the mixed multi-hand gestures. A dual 3D convolutional neural network-based feature fusion network is proposed for feature extraction and classification. We developed the FMCW radar-based platform to evaluate the performance of the proposed multi-hand gesture recognition method; the experimental results show that the proposed method can achieve an average recognition accuracy of 93.12% when eight gestures with two hands are performed simultaneously

    Changes in the relative inflammatory responses in sheep cells overexpressing of toll-like receptor 4 when stimulated with LPS.

    Get PDF
    BACKGROUND: Many groups of Gram-negative bacteria cause diseases harmful to sheep. TLR4 is an important Toll-like receptor (TLR) which responds to common Gram-negative bacterial infections. Activation of TLR4 leads to the induction of inflammatory responses, which is a linkage between the innate and adaptive immune systems. A vector pTLR4-3S was constructed to overexpress TLR4 gene in sheep. In this study, effects of TLR4 overexpression on inflammation response under LPS stimulated were addressed in vivo and in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Sheep fetal fibroblasts were transfected with expression vector pTLR4-3S. Transgenic sheep were produced by microinjection of the constructed plasmids into fertilized eggs. Fetal fibroblasts, monocyte-macrophage and fibroblasts isolated from the transgenic sheep were stimulated by LPS. After that immunoactive factors (TNF-α, IL-10, IL-6, IL-8, IFN-γ), nitric oxide, phagocytize ability and adhesion were detected. Furthermore, transgenic sheep were intradermal injected of LPS in ear and observed pathological changes by HE strain. Overexpression of TLR4 gene was observed on transgenic cells and individuals. In vitro, TLR4 overexpression transgenic cells secreted Th1 and Th2 inducing cytokines with a strong LPS mediated inflammation response and promoting the secretion of nitric oxide, and then recovered to initial level. The phagocytosis index of monocyte/macrophage in transgenic sheep was higher than that of non-transgenic sheep (P<0.05). In vivo, tissue sections showed that transgenic individuals launched inflammation response more quickly. CONCLUSIONS/SIGNIFICANCE: Overexpression of TLR4 in transgenic sheep enhanced the clearance of invaded microbe through secretion of cytokines, activation of macrophage, oxidation damage and infiltration of neutrophil

    Identification of differential genomic DNA Methylation in the hypothalamus of pubertal rat using reduced representation Bisulfite sequencing

    No full text
    Abstract Background There are many variables affecting the onset of puberty in animals, including genetic, nutritional, and environmental factors. Recent studies suggest that epigenetic regulation, especially DNA methylation, plays a majorrole in the regulation of puberty. However, there have been no reports on DNA methylation of the pubertal genome. Methods We investigated DNA methylation in the female rat hypothalamus at prepuberty and puberty using reduced representation bisulfite sequencing technology. The identified genes and signaling pathways exhibiting changes to DNA methylation in pubertal rats were determined by Gene Ontogeny and Kyoto Encyclopedia of Genes and Genomes analysis. Results The distribution of the three types of methylated C bases in promoter and CpG island (CGI) regions in the hypothalamus was as follows: 87.79% CG, 3.05% CHG, 9.16% CHH for promoters, and 88.35% CG, 3.21% CHG, 88.35% CHH for CGI in prepubertal rats; and 90.78% CG, 2.13% CHG, 7.09% CHH for promoters, and 88.59% CG, 88.59% CHG, 8.35% CHH for CGI in pubertal animals. CG showed the highest percentage of methylation, and was the highest methylation state in CGI. Compared to prepubertal hyoyhalamus samples, we identified ten genes with altered methylation in promoter regions in the pubertal hypothalamus samples, and 43 genes with altered methylation in the CGI. Changes in DNA methylation were found in gonadotropin-releasing hormone signaling pathways, and the oocyte meiosis pathway. Conclusion Our results demonstrate changes in DNA methylation occur in female rats from prepuberty to puberty suggestng DNA methylation may play a crucial role in the regulation of puberty onset. This study provides essential information for future studies on the role of epigenetics in the regulation of puberty

    Presentation_1_Virtual reality-induced motor function of the upper extremity and brain activation in stroke: study protocol for a randomized controlled trial.pdf

    No full text
    BackgroundThe benefits of virtual reality (VR)-based rehabilitation were reported in patients after stroke, but there is insufficient evidence about how VR promotes brain activation in the central nervous system. Hence, we designed this study to explore the effects of VR-based intervention on upper extremity motor function and associated brain activation in stroke patients.Methods/designIn this single-center, randomized, parallel-group clinical trial with a blinded assessment of outcomes, a total of 78 stroke patients will be assigned randomly to either the VR group or the control group. All stroke patients who have upper extremity motor deficits will be tested with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and clinical evaluation. Clinical assessment and fMRI will be performed three times on each subject. The primary outcome is the change in performance on the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE). Secondary outcomes are functional independence measure (FIM), Barthel Index (BI), grip strength, and changes in the blood oxygenation level-dependent (BOLD) effect in the ipsilesional and contralesional primary motor cortex (M1) on the left and right hemispheres assessed with resting-state fMRI (rs-fMRI), task-state fMRI (ts-fMRI), and changes in EEG at the baseline and weeks 4 and 8.DiscussionThis study aims to provide high-quality evidence for the relationship between upper extremity motor function and brain activation in stroke. In addition, this is the first multimodal neuroimaging study that explores the evidence for neuroplasticity and associated upper motor function recovery after VR in stroke patients.Clinical trial registrationChinese Clinical Trial Registry, identifier: ChiCTR2200063425.</p

    Effect of GABA-T on Reproductive Function in Female Rats

    No full text
    This study explored the role of &gamma;-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 &mu;g/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 &mu;g/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4
    corecore