191 research outputs found

    GFF: Gated Fully Fusion for Semantic Segmentation

    Full text link
    Semantic segmentation generates comprehensive understanding of scenes through densely predicting the category for each pixel. High-level features from Deep Convolutional Neural Networks already demonstrate their effectiveness in semantic segmentation tasks, however the coarse resolution of high-level features often leads to inferior results for small/thin objects where detailed information is important. It is natural to consider importing low level features to compensate for the lost detailed information in high-level features.Unfortunately, simply combining multi-level features suffers from the semantic gap among them. In this paper, we propose a new architecture, named Gated Fully Fusion (GFF), to selectively fuse features from multiple levels using gates in a fully connected way. Specifically, features at each level are enhanced by higher-level features with stronger semantics and lower-level features with more details, and gates are used to control the propagation of useful information which significantly reduces the noises during fusion. We achieve the state of the art results on four challenging scene parsing datasets including Cityscapes, Pascal Context, COCO-stuff and ADE20K.Comment: accepted by AAAI-2020(oral

    SFNet: Faster and Accurate Semantic Segmentation via Semantic Flow

    Full text link
    In this paper, we focus on exploring effective methods for faster and accurate semantic segmentation. A common practice to improve the performance is to attain high-resolution feature maps with strong semantic representation. Two strategies are widely used: atrous convolutions and feature pyramid fusion, while both are either computationally intensive or ineffective. Inspired by the Optical Flow for motion alignment between adjacent video frames, we propose a Flow Alignment Module (FAM) to learn \textit{Semantic Flow} between feature maps of adjacent levels and broadcast high-level features to high-resolution features effectively and efficiently. Furthermore, integrating our FAM to a standard feature pyramid structure exhibits superior performance over other real-time methods, even on lightweight backbone networks, such as ResNet-18 and DFNet. Then to further speed up the inference procedure, we also present a novel Gated Dual Flow Alignment Module to directly align high-resolution feature maps and low-resolution feature maps where we term the improved version network as SFNet-Lite. Extensive experiments are conducted on several challenging datasets, where results show the effectiveness of both SFNet and SFNet-Lite. In particular, when using Cityscapes test set, the SFNet-Lite series achieve 80.1 mIoU while running at 60 FPS using ResNet-18 backbone and 78.8 mIoU while running at 120 FPS using STDC backbone on RTX-3090. Moreover, we unify four challenging driving datasets into one large dataset, which we named Unified Driving Segmentation (UDS) dataset. It contains diverse domain and style information. We benchmark several representative works on UDS. Both SFNet and SFNet-Lite still achieve the best speed and accuracy trade-off on UDS, which serves as a strong baseline in such a challenging setting. The code and models are publicly available at https://github.com/lxtGH/SFSegNets.Comment: IJCV-2023; Extension of Previous work arXiv:2002.1012

    Mitigating Semantic Confusion from Hostile Neighborhood for Graph Active Learning

    Full text link
    Graph Active Learning (GAL), which aims to find the most informative nodes in graphs for annotation to maximize the Graph Neural Networks (GNNs) performance, has attracted many research efforts but remains non-trivial challenges. One major challenge is that existing GAL strategies may introduce semantic confusion to the selected training set, particularly when graphs are noisy. Specifically, most existing methods assume all aggregating features to be helpful, ignoring the semantically negative effect between inter-class edges under the message-passing mechanism. In this work, we present Semantic-aware Active learning framework for Graphs (SAG) to mitigate the semantic confusion problem. Pairwise similarities and dissimilarities of nodes with semantic features are introduced to jointly evaluate the node influence. A new prototype-based criterion and query policy are also designed to maintain diversity and class balance of the selected nodes, respectively. Extensive experiments on the public benchmark graphs and a real-world financial dataset demonstrate that SAG significantly improves node classification performances and consistently outperforms previous methods. Moreover, comprehensive analysis and ablation study also verify the effectiveness of the proposed framework.Comment: Accepted by CIKM 202
    • …
    corecore