138 research outputs found

    Population synthesis for low and intermediate mass binaries

    Full text link
    A review of the basic principles of the population synthesis for binary stars is presented. We discuss the break-up of low and intermediate mass close binaries over different evolutionary scenarios and, as an example, briefly consider results of the population synthesis for SN Ia.Comment: 10 pages, 4 figures, to appear in INTERACTING BINARIES: Accretion, Evolution and Outcomes, AIP, Eds: L. A. Antonelli, L. Burderi, F. D'Antona, T. Di Salvo, G.L. Israel, L. Piersanti, O. Straniero, A. Tornambe

    Fun for Two

    Get PDF
    We performed populations synthesis calculations of single stars and binaries and show that binary evolution is extremely important for Galactic astronomy. We review several binary evolution models and conclude that they give quite different results. These differences can be understood from the assumptions related to how mass is transfered in the binary systems. Most important are 1) the fraction of mass that is accreted by the companion star during mass transfer, 2) the amount of specific angular momentum which is carried away with the mass that leaves the binary system.Comment: 7 pages, 0 figures to appear in the proceeding of the IAU Symposium 200, "The Formation of Binary Stars" eds. H. Zinnecker and R. Mathie

    Next generation population synthesis of accreting white dwarfs: I. Hybrid calculations using BSE + MESA

    Full text link
    Accreting, nuclear-burning white dwarfs have been deemed to be candidate progenitors of type Ia supernovae, and to account for supersoft X-ray sources, novae, etc. depending on their accretion rates. We have carried out a binary population synthesis study of their populations using two algorithms. In the first, we use the binary population synthesis code \textsf{BSE} as a baseline for the "rapid" approach commonly used in such studies. In the second, we employ a "hybrid" approach, in which we use \textsf{BSE} to generate a population of white dwarfs (WD) with non-degenerate companions on the verge of filling their Roche lobes. We then follow their mass transfer phase using the detailed stellar evolution code \textsf{MESA}. We investigate the evolution of the number of rapidly accreting white dwarfs (RAWDs) and stably nuclear-burning white dwarfs (SNBWDs), and estimate the type Ia supernovae (SNe Ia) rate produced by "single-degenerate" systems (SD). We find significant differences between the two algorithms in the predicted numbers of SNBWDs at early times, and also in the delay time distribution (DTD) of SD SNe Ia. Such differences in the treatment of mass transfer may partially account for differences in the SNe Ia rate and DTD found by different groups. Adopting 100\% efficiency for helium burning, the rate of SNe Ia produced by the SD-channel in a Milky-way-like galaxy in our calculations is 2.0×10−4yr−12.0\times10^{-4}\rm{yr}^{-1}, more than an order of magnitude below the observationally inferred value. In agreement with previous studies, our calculated SD DTD is inconsistent with observations.Comment: 13 pages,11 figures, accepted by MNRA

    Population synthesis of accreting white dwarfs: II. X-ray and UV emission

    Full text link
    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm ISM. In an earlier paper we modeled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code \textsc{BSE}, and then following their evolution with a grid of evolutionary tracks computed with \textsc{MESA}. Now we use these results to estimate the soft X-ray (0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of super-soft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ∼1\sim 1 Gyr and decline by ∼1−3\sim 1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ∼\sim~10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686A˚/Hβ\AA/\rm{H}{\beta} line ratio measured in stacked SDSS spectra of retired galaxies, the latter characterising the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He~II~4686A˚/Hβ\AA/\rm{H}{\beta} ratio are significantly overpredicted for stellar ages of ≲4−8\lesssim 4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass loss for giant stars.Comment: 13 pages, 12 figures, MNRAS accepte
    • …
    corecore