719 research outputs found

    AN APPROACH TO RISK MANAGEMENT FOR E-COMMERCE

    Get PDF
    Today’s trend of online shopping proves the vital role e-commerce plays in our daily life. Online transactions require reliable networks, and reliable networks depend on secure information technology. These networks have many advantages, but they have disadvantages as well—notably, the need for risk management. The growing importance of e-commerce, with its associated need to ensure trust in online transactions, has led the authors to study and propose risk management in e-commerce from a holistic perspective, thus enabling the implementation of real-time auditing of e-commerce transactions using the digital agents’ technology. In this paper, the authors discuss e-commerce’s risks and present a methodology that can be used to manage those risks. It concludes that e-commerce risks are a high priority for online businesses, and that many of the requisite controls are extensions of controls for managing risk in other information systems

    Field-Free Switching in Symmetry Breaking Multilayers: The Critical Role of Interlayer Chiral Exchange

    Full text link
    It is crucial to realize field-free, deterministic, current-induced switching in spin-orbit torque magnetic random-access memory (SOT-MRAM) with perpendicular magnetic anisotropy (PMA). A tentative solution has emerged recently, which employs the interlayer chiral exchange coupling or the interlayer Dzyaloshinskii-Moriya interaction (i-DMI) to achieve symmetry breaking. We hereby investigate the interlayer DMI in a Pt/Co multilayer system with orthogonally magnetized layers, using repeatedly stacked [Pt/Co]n structure with PMA, and a thick Co layer with in-plane magnetic anisotropy (IMA). We clarify the origin and the direction of such symmetry breaking with relation to the i-DMI effective field, and show a decreasing trend of the said effective field magnitude to the stacking number (n). By comparing the current-induced field-free switching behavior for both PMA and IMA layers, we confirm the dominating role of i-DMI in such field-free switching, excluding other possible mechanisms such as tilted-anisotropy and unconventional spin currents that may have arisen from the symmetry breaking

    Inhibitory effects of armepavine against hepatic fibrosis in rats

    Get PDF
    Activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrogenesis. armepavine (Arm, C19H23O3N), an active compound from Nelumbo nucifera, has been shown to exert immunosuppressive effects on T lymphocytes and on lupus nephritic mice. The aim of this study was to investigate whether Arm could exert anti-hepatic fibrogenic effects in vitro and in vivo. A cell line of rat HSCs (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS) to evaluate the inhibitory effects of Arm. An in vivo therapeutic study was conducted in bile duct-ligated (BDL) rats. BDL rats were given Arm (3 or 10 mg/kg) by gavage twice daily for 3 weeks starting from the onset of BDL. Liver sections were taken for fibrosis scoring, immuno-fluorescence staining and quantitative real-time mRNA measurements. In vitro, Arm (1-10 μM) concentration-dependently attenuated TNF-α- and LPS-stimulated α-SMA protein expression and AP-1 activation by HSC-T6 cells without adverse cytotoxicity. Arm also suppressed TNF-α-induced collagen collagen deposition, NFκB activation and MAPK (p38, ERK1/2, and JNK) phosphorylations. In vivo, Arm treatment significantly reduced plasma AST and ALT levels, hepatic α-SMA expression and collagen contents, and fibrosis scores of BDL rats as compared with vehicle treatment. Moreover, Arm attenuated the mRNA expression levels of col 1α2, TGF-β1, TIMP-1, ICAM-1, iNOS, and IL-6 genes, but up-regulated metallothionein genes. Our study results showed that Arm exerted both in vitro and in vivo antifibrotic effects in rats, possibly through anti-NF-κB activation pathways

    Atomically-thin metallic Si and Ge allotropes with high Fermi velocities

    Full text link
    Silicon and germanium are the well-known materials used to manufacture electronic devices for the integrated circuits but they themselves are not considered as promising options for interconnecting the devices due to their semiconducting nature. We have discovered that both Si and Ge atoms can form unexpected metallic monolayer structures which are more stable than the extensively studied semimetallic silicene and germanene, respectively. More importantly, the newly discovered two-dimensional allotropes of Si and Ge have Fermi velocities superior to the Dirac fermions in graphene, indicating that the metal wires needed in the silicon-based integrated circuits can be made of Si atom itself without incompatibility, allowing for all-silicon-based integrated circuits.Comment: 10 pages, 3 figures, 1 tabl

    Ellagic Acid, the Active Compound of Phyllanthus urinaria, Exerts In Vivo Anti-Angiogenic Effect and Inhibits MMP-2 Activity

    Get PDF
    This study aimed to assess the potential anti-angiogenic mechanism of Phyllanthus urinaria (P. urinaria) and characterize the major compound in P. urinaria that exerts anti-angiogenic effect. The water extract of P. urinaria and Ellagic Acid were used to evaluate the anti-angiogenic effect in chorioallantoic membrane (CAM) in chicken embryo and human vascular endothelial cells (HUVECs). The matrix metalloproteinase-2 (MMP-2) activity was determined by gelatin zymography. The mRNA expressions of MMP-2, MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) were analyzed by reverse transcription polymerase chain reaction (RT-PCR). Level of MMP-2 proteins in conditioned medium or cytosol was determined by western blot analysis. We confirmed that P. urinaria's in vivo anti-angiogenic effect was associated with a reduction in MMP-2 activity. Ellagic acid, one of the major polyphenolic components as identified in P. urinaria by high performance liquid chromatography mass spectrometry (HPLC/MS), exhibited the same anti-angiogenic effect in vivo. Both P. urinaria and Ellagic Acid inhibited MMP-2 activity in HUVECs with unchanged mRNA level. The mRNA expression levels of MMP-14 and TIMP-2 were not altered either. Results from comparing the change of MMP-2 protein levels in conditioned medium and cytosol of HUVECs after the P. urinaria or Ellagic Acid treatment revealed an inhibitory effect on the secretion of MMP-2 protein. This study concluded that Ellagic Acid is the active compound in P. urinaria to exhibit anti-angiogenic activity and to inhibit the secretion of MMP-2 protein from HUVECs

    Human Fetal Scalp Dermal Papilla Enriched Genes and the Role of R-Spondin-1 in the Restoration of Hair Neogenesis in Adult Mouse Cells

    Get PDF
    Much remains unknown about the regulatory networks which govern the dermal papilla’s (DP) ability to induce hair follicle neogenesis, a capacity which decreases greatly with age. To further define the core genes which characterize the DP cell and to identify pathways prominent in DP cells with greater hair inductive capacity, comparative transcriptome analyses of human fetal and adult dermal follicular cells were performed. 121 genes were significantly upregulated in fetal DP cells in comparison to both fetal dermal sheath cup (DSC) cells and interfollicular dermal (IFD) populations. Comparison of the set of enriched human fetal DP genes with human adult DP, newborn mouse DP, and embryonic mouse dermal condensation (DC) cells revealed differences in the expression of Wnt/β-catenin, Shh, FGF, BMP, and Notch signaling pathways. We chose R-spondin-1, a Wnt agonist, for functional verification and show that exogenous administration restores hair follicle neogenesis from adult mouse cells in skin reconstitution assays. To explore upstream regulators of fetal DP gene expression, we identified twenty-nine transcription factors which are upregulated in human fetal DP cells compared to adult DP cells. Of these, seven transcription factor binding motifs were significantly enriched in the candidate promoter regions of genes differentially expressed between fetal and adult DP cells, suggesting a potential role in the regulatory network which confers the fetal DP phenotype and a possible relationship to the induction of follicle neogenesis
    corecore