1,767 research outputs found

    Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal

    Get PDF
    We investigate experimentally metal-insulator-silicon-insulator-metal (MISIM) waveguides that are fabricated by using fully standard CMOS technology. They are hybrid plasmonic waveguides, and they have a feature that their insulator is replaceable with functional material. We explain a fabrication process for them and discuss fabrication results based on 8-inch silicon-on-insulator wafers. We measured the propagation characteristics of the MISIM waveguides that were actually fabricated to be connected to Si photonic waveguides through symmetric and asymmetric couplers. When incident light from an optical source has transverse electric (TE) polarization and its wavelength is 1318 or 1554 nm, their propagation losses are between 0.2 and 0.3 dB/mu m. Excess losses due to the symmetric couplers are around 0.5 dB, which are smaller than those due to the asymmetric couplers. Additional measurement results indicate that the MISIM waveguide supports a TE-polarized hybrid plasmonic mode. Finally, we explain a process of removing the insulator without affecting the remaining MISIM structure to fabricate similar to 30-nm-wide nanochannels which may be filled with functional material.open8

    Search Tree Generation for the Exception Handling of E-Commerce Delivery Process

    Get PDF
    A business process management system (BPMS) offers the facility to define new processes or update the existing processes. However, exceptional or non-routine tasks require the intervention of domain experts or generation of the situation specific resolution process. This paper assumes that sufficient amount of business process exception handling cases are stored in the process repository. Since the retrieval of the best exception handling process requires good understanding about the exceptional situation, context awareness is an important issue. To facilitate the representation of the exceptional situation and to enable the selection of the best exception handling process, we adopted the `situation variable' and `decision variable' construct. A case example for exception handling in the e-commerce delivery process is provided to illustrate how the proposed construct works. We applied the C5.0 algorithm to build the optimum search tree

    2D perovskite stabilized phase-pure formamidinium perovskite solar cells.

    Get PDF
    Compositional engineering has been used to overcome difficulties in fabricating high-quality phase-pure formamidinium perovskite films together with its ambient instability. However, this comes alongside an undesirable increase in bandgap that sacrifices the device photocurrent. Here we report the fabrication of phase-pure formamidinium-lead tri-iodide perovskite films with excellent optoelectronic quality and stability. Incorporation of 1.67 mol% of 2D phenylethylammonium lead iodide into the precursor solution enables the formation of phase-pure formamidinium perovskite with an order of magnitude enhanced photoluminescence lifetime. The 2D perovskite spontaneously forms at grain boundaries to protect the formamidinium perovskite from moisture and suppress ion migration. A stabilized power conversion efficiency (PCE) of 20.64% (certified stabilized PCE of 19.77%) is achieved with a short-circuit current density exceeding 24 mA cm-2 and an open-circuit voltage of 1.130 V, corresponding to a loss-in-potential of 0.35 V, and significantly enhanced operational stability

    Electronic band structures of Ge1−xSnx semiconductors: A first-principles density functional theory study

    Get PDF
    [[abstract]]We conduct first-principles total-energy density functional calculations to study the band structures in Ge 1− x Sn x infrared semiconductor alloys. The norm-conserving optimized pseudopotentials of Ge and Sn have been constructed for electronic structure calculations. The composition-bandgap relationships in Ge 1−x Sn x lattices are evaluated by a detailed comparison of structural models and their electronic band structures. The critical Sn composition related to the transition from indirect- to direct-gap in Ge 1−x Sn x alloys is estimated to be as low as x∼ 0.016 determined from the parametric fit. Our results show that the crossover Sn concentration occurs at a lower critical Sn concentration than the values predicted from the absorption measurements. However, early results indicate that the reliability of the critical Sn concentration from such measurements is hard to establish, since the indirect gap absorption is much weaker than the direct gap absorption. We find that the direct band gap decreases exponentially with the Sn composition over the range 0 0.375, in very good agreement with the theoretical observed behavior [D. W. Jenkins and J. D. Dow, Phys. Rev. B 36, 7994, 1987]. For homonuclear and heteronuclear complexes of Ge 1−x Sn x alloys, the indirect band gap at L-pointis is found to decrease homonuclear Ge-Ge bonds or increase homonuclear Sn-Sn bonds as a result of the reduced L valley. All findings agree with previously reported experimental and theoretical results. The analysis suggests that the top of valence band exhibits the localization of bond charge and the bottom of the conduction band is composed of the Ge 4s4p and/or Sn 5s5p atomic orbits.[[booktype]]紙本[[booktype]]電子

    Bcl-x Pre-mRNA splicing regulates brain injury after neonatal hypoxia-ischemia

    Get PDF
    The bcl-x gene appears to play a critical role in regulating apoptosis in the developing and mature central nervous system (CNS) and following CNS injury. Two isoforms of Bcl-x are produced as a result of alternative pre-mRNA splicing: Bcl-x(L) (the long form) is anti-apoptotic, while Bcl-x(S) (short form) is pro-apoptotic. Despite the antagonistic activities of these two isoforms, little is known about how regulation of alternative splicing of bcl-x may mediate neural cell apoptosis. Here, we report that apoptotic stimuli (staurosporine or C2-ceramide) reciprocally altered Bcl-x splicing in neural cells, decreasing Bcl-x(L) while increasing Bcl-x(S). Specific knockdown of Bcl-x(S) attenuated apoptosis. In order to further define regulatory elements that influenced Bcl-x splicing, a Bcl-x minigene was constructed. Deletional analysis revealed several consensus sequences within intron 2 that altered splicing. We found that the splicing factor, CUG-binding-protein-1 (CUGBP1), bound to a consensus sequence close to the Bcl-x(L) 5′ splice site, altering the Bcl-x(L)/Bcl-x(S) ratio and influencing cell death. In vivo, neonatal hypoxia-ischemia reciprocally altered Bcl-x pre-mRNA splicing, similar to the in vitro studies. Manipulation of the splice isoforms using viral gene transfer of Bcl-x(S) shRNA into the hippocampus of rats prior to neonatal hypoxia-ischemia decreased vulnerability to injury. Moreover, alterations in nuclear CUGBP1 preceded Bcl-x splicing changes. These results suggest that alternative pre-mRNA splicing may be an important regulatory mechanism for cell death after acute neurological injury, and may potentially provide novel targets for intervention

    Agaricus blazei Extract Induces Apoptosis through ROS-Dependent JNK Activation Involving the Mitochondrial Pathway and Suppression of Constitutive NF-κB in THP-1 Cells

    Get PDF
    Agaricus blazei is widely accepted as a traditional medicinal mushroom, and it has been known to exhibit immunostimulatory and anti-cancer activity. However, the apoptotic mechanism in cancer cells is poorly understood. In this study, we have investigated whether A. blazei extract (ABE) exerts antiproliferative and apoptotic effects in human leukemic THP-1 cells. We observed that ABE-induced apoptosis is associated with the mitochondrial pathway, which is mediated by reactive oxygen species (ROS) generation and prolonged c-Jun N-terminal kinase (JNK) activation. In addition, the ABE treatment resulted in the accumulation of cytochrome c in the cytoplasm, an increase in caspase activity, and an upregulation of Bax and Bad. With those results in mind, we found that ABE decreases constitutive NF-κB activation and NF-κB-regulated gene products such as IAP-1 and -2. We concluded that ABE induces apoptosis with ROS-dependent JNK activation and constitutive activated NF-κB inhibition in THP-1 cells

    TDP1 and TOP1 Modulation in Olaparib-Resistant Cancer Determines the Efficacy of Subsequent Chemotherapy

    Get PDF
    The aim of this study was to elucidate the carryover effect of olaparib to subsequent chemotherapy and its underlying mechanisms. We generated olaparib-resistant SNU-484, SNU-601, SNU-668, and KATO-III gastric cancer cell lines and confirmed their resistance by cell viability and colony forming assays. Notably, olaparib-resistant cell lines displayed cross-resistance to cisplatin except for KATO-III. Inversely, olaparib-resistant SNU-484, SNU-668, and KATO-III were more sensitive to irinotecan than their parental cells. However, sensitivity to paclitaxel remained unaltered. There were compensatory changes in the ATM/ATR axis and p-Chk1/2 protein expression. ERCC1 was also induced in olaparib-resistant SNU-484, SNU-601, and SNU-668, which showed cross-resistance to cisplatin. Olaparib-resistant cells showed tyrosyl-DNA phosphodiesterase 1 (TDP1) downregulation with higher topoisomerase 1 (TOP1) activity, which is a target of irinotecan. These changes of TOP1 and TDP1 in olaparib-resistant cells was confirmed as the underlying mechanism for increased irinotecan sensitivity through manipulated gene expression of TOP1 and TDP1 by specific plasmid transfection and siRNA. The patient-derived xenograft model established from the patient who acquired resistance to olaparib with BRCA2 mutation showed increased sensitivity in irinotecan. In conclusion, the carryover effects of olaparib to improve antitumor effect of subsequent irinotecan were demonstrated. These effects should be considered when determining the subsequent therapy with olaparib.

    Quantitative Evaluation of Post-stroke Spasticity Using Neurophysiological and Radiological Tools: A Pilot Study

    Get PDF
    Objective To determine the possibility of a new measurement tool using electromyography and ultrasonography for quantitative spasticity assessment in post-stroke patients. Methods Eight hemiplegic stroke patients with ankle plantarflexor spasticity confirmed by a Modified Ashworth Scale (MAS) were enrolled. Spasticity was evaluated using the MAS and Modified Tardieu Scale (MTS). Each subject underwent surface electromyography (sEMG) using the Brain Motor Control Assessment (BMCA) protocol and was compared with a healthy control group. Using ultrasonography, muscle architecture and elasticity index were measured from the medial gastrocnemius muscle (GCM) on the affected and unaffected sides. Results MAS and MTS revealed significant correlation with sEMG activity. The fascicle length and pennation angle were significantly decreased in the medial GCM on the hemiplegic side compared with the unaffected side. The elasticity index of the spastic medial GCM was significantly increased compared with the unaffected side. The MTS X and R2–R1 values were significantly correlated with the elasticity index in the hemiplegic GCM. The relationship between clinical evaluation tools and both BMCA and sonoelastography was linear, but not statistically significant in the multiple regression analysis. Conclusion The BMCA protocol and ultrasonographic evaluation provide objective assessment of post-stroke spasticity. Further studies are necessary to conduct accurate assessment and treatment of spasticity

    Tetraarsenic Hexoxide Induces Beclin-1-Induced Autophagic Cell Death as well as Caspase-Dependent Apoptosis in U937 Human Leukemic Cells

    Get PDF
    Tetraarsenic hexaoxide (As4O6) has been used in Korean folk remedy for the treatment of cancer since the late 1980s, and arsenic trioxide (As2O3) is currently used as a chemotherapeutic agent. However, evidence suggests that As4O6-induced cell death pathway was different from that of As2O3. Besides, the anticancer effects and mechanisms of As4O6 are not fully understood. Therefore, we investigated the anticancer activities of As4O6 on apoptosis and autophagy in U937 human leukemic cells. The growth of U937 cells was inhibited by As4O6 treatment in a dose- and a time-dependent manner, and IC50 for As4O6 was less than 2 μM. As4O6 induced caspase-dependent apoptosis and Beclin-1-induced autophagy, both of which were significantly attenuated by Bcl-2 augmentation and N-acetylcysteine (NAC) treatment. This study suggests that As4O6 should induce Beclin-1-induced autophagic cell death as well as caspase-dependent apoptosis and that it might be a promising agent for the treatment of leukemia
    corecore