349 research outputs found
An Analysis of Habitual Mode Use in the Years of Rising Oil Prices
The existence of state dependence derived from panel data has played a very important role in studying employment and labor policies. This study is about state dependence of the transportation sector using retrospective panel survey data. The Ministry of Land, Infrastructure and Transport of Korea has conducted the survey to monitor changes in vehicle ownership and usage nationwide and to prepare measures when oil prices tend to rise sharply. From this data, we identify the existence of state dependence on passenger cars, public transportation, and nonmotorized modes. To do this, we estimate and analyze the dynamic random effects probit model that explains the selection of each transportation mode after controlling for the unobserved individual heterogeneity. Our results indicate that despite the rise of oil prices, behavior of habitual use (i.e., state dependence) of transportation modes is found in all three modes. The amount of state dependence of nonmotorized modes was the largest, followed by passenger cars and public transportation. From the estimated models, important policy implications can be drawn from the fact that the presence of state dependence and the importance of early habit formation are important not only in nonmotorized modes but also in public transportation. In other words, if policy makers want to encourage people to use public transportation in a new city, it suggests that a sufficient and convenient public transportation network should be built before people move to the city. Once cities are built without sufficient public transportation networks and people have become accustomed to using private cars, then it will be more difficult to change their transportation modes, requiring much more social efforts and costs.
Document type: Articl
Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition
We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone
Quantum Hall effect in graphene decorated with disordered multilayer patches
Quantum Hall effect (QHE) is observed in graphene grown by chemical vapour deposition using platinum catalyst. The QHE is even seen in samples which are irregularly decorated with disordered multilayer graphene patches and have very low mobility (<500 cm2V−1s−1). The effect does not seem to depend on electronic mobility and uniformity of the resulting material, which indicates the robustness of QHE in graphene
Growth mechanism of graphene on platinum:Surface catalysis and carbon segregation
A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently "grow from below." By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000°C growth temperature.</p
Structural changes of polyaniline/montmorillonite nanocomposites and their effects on physical properties
Polyaniline/montmorillonite (MMT) nanocomposites containing different PANI contents were prepared by the intercalation of aniline monomer into pristine MMT followed by the subsequent oxidative polymerization of the aniline in the interlayer spacings. The polyaniline/MMT nanocomposite structure intercalated with polyaniline (PANI) was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). From the full-width at half-maximum (FWHM) of the (001) reflection peaks in the XRD patterns, the PANI/MMT nanocomposite containing 12.3 wt% PANI (PMN12) was found to be in the most disordered state. The physical interaction between the intercalated PANI and the basal surfaces of MMT was monitored by FT-IR. The room-temperature conductivity (RT) varied from 9.1 × 10–9 to 1.5 × 100 S cm–1 depending on the PANI content in the nanocomposites. The temperature dependence of dc conductivity (dc(T)) of all the samples follows the quasi-1D variable range hopping (quasi-1D VRH) model (i.e., dc(T) exp [–(T0/T)1/2]). The charge transport behavior of this system was interpreted from the slopes (T0) of the dc curves and the highest T0 value was found for the PANI/MMT nanocomposite with 12.3 wt% PANI (PMN12). The FT-IR, dc(T) and RT results for the nanocomposites with varying content of PANI are consistently related to the structure of the PANI/MMT nanocomposites discussed in the XRD analysis. The structural argument was further supported by scanning electron microscopy (SEM) of all the samples. Thermogravimetric analysis (TGA) showed improved thermal stability for the intercalated nanocomposites in comparison with the pure PANI and a simple PANI/MMT mixture.We are very grateful for the financial support from the
National Research Laboratory Fund from the Ministry of
Science and Technology (MOST), the Korean Ministry of
Education through the Brain Korea 21 Program, and the
Research Institute of Advanced Materials (RIAM) at Seoul
National University. We also thank Mrs Mee Jeong Kang for
her kind SEM and TEM measurements
Scalable Production of Highly-Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor
We have developed a novel, all-electronic biosensor for opioids that consists
of an engineered mu opioid receptor protein, with high binding affinity for
opioids, chemically bonded to a graphene field-effect transistor to read out
ligand binding. A variant of the receptor protein that provided chemical
recognition was computationally redesigned to enhance its solubility and
stability in an aqueous environment. A shadow mask process was developed to
fabricate arrays of hundreds of graphene transistors with average mobility of
~1500 cm2 V-1 s-1 and yield exceeding 98%. The biosensor exhibits high
sensitivity and selectivity for the target naltrexone, an opioid receptor
antagonist, with a detection limit of 10 pg/mL.Comment: Nano Letters 201
PDZ-based adaptor proteins in epithelial anion transport and VIP receptor regulation
Polarized protein deposition at the apical and basolateral membranes of epithelial cells is critical for the asymmetrical transport of ions and fluids across the epithelia. PDZ-based modular adaptor proteins are expressed in the junctional areas in epithelial cells and are generally part of a molecular scaffold that determines the localization and activity of ion channels, receptors, and other signaling molecules to their correct spatial arrangement for proper response to diverse stimuli. Hence, understanding the regulatory mechanisms of channels and receptors via PDZ-based adaptors will provide valuable insights into the physiology of epithelial cells as well as pathophysiology of many human diseases including cystic fibrosis
Cytoprotective effects of fermented oyster extracts against oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in MC3T3-E1 osteoblasts
Osteoblast damage by oxidative stress has been recognized as a cause of bone-related disease, including osteoporosis. Recently, we reported that fermented Pacific oyster (Crassostrea gigas) extracts (FO) inhibited osteoclastogenesis and osteoporosis, while promoting osteogenesis. However, since the beneficial potential of FO on osteoblasts is not well known, in the present study, we investigated the cytoprotective effect of FO against oxidative stress in MC3T3-E1 osteoblasts. Our results demonstrated that FO inhibited hydrogen peroxide (H2O2)-induced DNA damage and cytotoxicity through the rescue of mitochondrial function by blocking abnormal ROS accumulation. FO also prevented apoptosis by suppressing loss of mitochondrial membrane potential and cytosolic release of cytochrome c, decreasing the rate of Bax/Bcl-2 expression and reducing the activity of caspase-9 and caspase-3 in H2O2-stimulated MC3T3-E1 osteoblasts, suggesting that FO protected MC3T3-E1 osteoblasts from the induction of caspase dependent- and mitochondria-mediated apoptosis by oxidative stress. In addition, FO markedly promoted the activation of nuclear factor-erythroid-2-related factor 2 (Nrf2), which was associated with the enhanced expression of heme oxygenase-1 (HO-1). However, inhibiting the expression of HO-1 by artificially blocking the expression of Nrf2 using siRNA significantly eliminated the protective effect of FO, indicating that FO activates the Nrf2/HO-1 signaling pathway in MC3T3-E1 osteoblasts to protect against oxidative stress. Based on the present data, FO is thought to be useful as a potential therapeutic agent for the inhibition of oxidative stress in osteoblasts
Nanostructured, Self-Assembling Peptide K5 Blocks TNF-α and PGE2 Production by Suppression of the AP-1/p38 Pathway
Nanostructured, self-assembling peptides hold promise for a variety of regenerative medical applications such as 3D cell culture systems, accelerated wound healing, and nerve repair. The aim of this study was to determine whether the self-assembling peptide K5 can be applied as a carrier of anti-inflammatory drugs. First, we examined whether the K5 self-assembling peptide itself can modulate various cellular inflammatory responses. We found that peptide K5 significantly suppressed the release of tumor-necrosis-factor- (TNF-) α and prostaglandin E2 (PGE2) from RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Similarly, there was inhibition of cyclooxygenase- (COX-) 2 mRNA expression assessed by real-time PCR, indicating that the inhibition is at the transcriptional level. In agreement with this finding, peptide K5 suppressed the translocation of the transcription factors activator protein (AP-1) and c-Jun and inhibited upstream inflammatory effectors including mitogen activated protein kinase (MAPK), p38, and mitogen-activated protein kinase kinase 3/6 (MKK 3/6). Whether this peptide exerts its effects via a transmembrane or cytoplasmic receptor is not clear. However, our data strongly suggest that the nanostructured, self-assembling peptide K5 may possess significant anti-inflammatory activity via suppression of the p38/AP-1 pathway
Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes
Oxidative stress due to excessive accumulation of reactive oxygen species (ROS) is one of the risk factors for the development of several chronic diseases. In this study, we investigated the protective effects of Scutellaria bai- calensis rhizome ethanol extract (SBRE) against oxidative stress-induced cellular damage and elucidated the un- derlying mechanisms in the HaCaT human skin keratinocyte cell line. Our results revealed that treatment with SBRE prior to hydrogen peroxide (H2O2) exposure significantly increased viability of aCaT cells. SBRE also effectively attenuated H2O2-induced comet tail formation and inhibited the H2O2-induced phosphorylation levels of the histone γH2AX, as well as the number of apoptotic bodies and Annexin V-positive cells. In addition, SBRE exhibited scavenging activity against intracellular ROS generation and restored the mitochondrial membrane po- tential loss by H2O2. Moreover, H2O2 enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)- polymerase, a typical substrate protein of activated
caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with SBRE. Furthermore, SBRE increased the levels of heme oxygenase-1 (HO-1), which is
a potent antioxidant enzyme, associated with the induction of nuclear fac- tor-erythroid 2-related factor 2 (Nrf2). According to our data, SBRE is able to protect HaCaT cells from H2O2- induced DNA damage and apoptosis through blocking cellular damage related to oxidative stress through a mech-anism that would affect ROS elimination and activating the Nrf2/HO-1 signaling pathway
- …