327 research outputs found

    Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade

    Get PDF
    published_or_final_versio

    p70 S6 kinase drives ovarian cancer metastasis through multicellular spheroid-peritoneum interaction and P-cadherin/β1 integrin signaling activation

    Get PDF
    Peritoneal dissemination as a manifestation of ovarian cancer is an adverse prognostic factor associated with poor clinical outcome, and is thus a potentially promising target for improved treatment. Sphere forming cells (multicellular spheroids) present in malignant ascites of patients with ovarian cancer represent a major impediment to effective treatment. p70 S6 kinase (p70S6K), which is a downstream effector of mammalian target of rapamycin, is frequently hyperactivated in human ovarian cancer. Here, we identified p70S6K as an important regulator for the seeding and successful colonization of ovarian cancer spheroids on the peritoneum. Furthermore, we provided evidence for the existence of a novel crosstalk between P-cadherin and β1 integrin, which was crucial for the high degree of specificity in cell adhesion. In particular, we demonstrated that the upregulation of mature β1 integrin occurred as a consequence of P-cadherin expression through the induction of the Golgi glycosyltransferase, ST6Gal-I, which mediated β1 integrin hypersialylation. Loss of p70S6K or targeting the P-cadherin/β1-integrin interplay could significantly attenuate the metastatic spread onto the peritoneum in vivo. These findings establish a new role for p70S6K in tumor spheroid-mesothelium communication in ovarian cancer and provide a preclinical rationale for targeting p70S6K as a new avenue for microenvironment-based therapeutic strategy.published_or_final_versio

    Sulodexide decreases albuminuria and regulates matrix protein accumulation in C57BL/6 mice with streptozotocin-induced type I diabetic nephropathy

    Get PDF
    OBJECTIVE: Sulodexide is a mixture of glycosaminoglycans that may reduce proteinuria in diabetic nephropathy (DN), but its mechanism of action and effect on renal histology is not known. We investigated the effect of sulodexide on disease manifestations in a murine model of type I DN. METHODS: Male C57BL/6 mice were rendered diabetic with streptozotocin. After the onset of proteinuria, mice were randomized to receive sulodexide (1 mg/kg/day) or saline for up to 12 weeks and renal function, histology and fibrosis were examined. The effect of sulodexide on fibrogenesis in murine mesangial cells (MMC) was also investigated. RESULTS: Mice with DN showed progressive albuminuria and renal deterioration over time, accompanied by mesangial expansion, PKC and ERK activation, increased renal expression of TGF-β1, fibronectin and collagen type I, III and IV, but decreased glomerular perlecan expression. Sulodexide treatment significantly reduced albuminuria, improved renal function, increased glomerular perlecan expression and reduced collagen type I and IV expression and ERK activation. Intra-glomerular PKC-α activation was not affected by sulodexide treatment whereas glomerular expression of fibronectin and collagen type III was increased. MMC stimulated with 30 mM D-glucose showed increased PKC and ERK mediated fibronectin and collagen type III synthesis. Sulodexide alone significantly increased fibronectin and collagen type III synthesis in a dose-dependent manner in MMC and this increase was further enhanced in the presence of 30 mM D-glucose. Sulodexide showed a dose-dependent inhibition of 30 mM D-glucose-induced PKC-βII and ERK phosphorylation, but had no effect on PKC-α or PKC-βI phosphorylation. CONCLUSIONS: Our data demonstrated that while sulodexide treatment reduced proteinuria and improved renal function, it had differential effects on signaling pathways and matrix protein synthesis in the kidney of C57BL/6 mice with DN.published_or_final_versio

    Tracking down the migration of mouse neural crest cells

    Get PDF
    During early embryonic development, cell migration is one of the most important morphogenetic processes. Neural crest cells arise from the dorsal part of the neural tube and migrate along different pathways to numerous locations where they differentiate into a variety of tissues. In the mouse, studies of neural crest cell migration have been difficult partly because of the absence of specific markers which can label neural crest cells throughout their migration from their origin to the site of differentiation. Nevertheless, the use of different experimental strategies involving extrinsic, intrinsic or genetic cell markers has already led to a good understanding of this migration. In our studies, extrinsic markers such as wheat germ agglutinin-gold conjugates and DiI and genetic markers including Hoxb2-lacZ and green fluorescent protein have been employed in tracing migrating neural crest cells. The labelling procedures and the strength and weaknesses of the tracing methods are reviewed herein. Copyright © 2003 S. Karger AG, Basel.published_or_final_versio

    Cellular cholesterol transport proteins in diabetic nephropathy

    Get PDF
    published_or_final_versio

    Selection of solar energy for green building using superiority and inferiority multi-criteria

    No full text
    Author name used in this publication: K. M. YuVersion of RecordPublishe

    Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.</p> <p>Results</p> <p>For acid and bile resistance, <it>L. hongkongensis </it>possessed a urease gene cassette, two <it>arc </it>gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent <it>Escherichia coli </it>(<it>E. coli</it>) and enterotoxigenic <it>E. coli</it>. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as <it>E. coli</it>, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.</p

    Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of <it>L. hongkongensis</it>, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances.</p> <p>Results</p> <p>A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the <it>L. hongkongensis </it>genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. <it>L. hongkongensis </it>is unique among closely related members of <it>Neisseriaceae </it>family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C<sup><sub>4</sub></sup>-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the <it>L. hongkongensis </it>genome also contained two copies of <it>qseB/qseC </it>homologues of the AI-3 quorum sensing system.</p> <p>Conclusions</p> <p>The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to adapt to different environments. Structural modeling will provide useful insights on the transporters in <it>L. hongkongensis</it>.</p
    corecore