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Abstract
During early embryonic development, cell migration is
one of the most important morphogenetic processes.
Neural crest cells arise from the dorsal part of the neural
tube and migrate along different pathways to numerous
locations where they differentiate into a variety of tis-
sues. In the mouse, studies of neural crest cell migration
have been difficult partly because of the absence of spe-
cific markers which can label neural crest cells through-
out their migration from their origin to the site of differ-
entiation. Nevertheless, the use of different experimental
strategies involving extrinsic, intrinsic or genetic cell
markers has already led to a good understanding of this
migration. In our studies, extrinsic markers such as
wheat germ agglutinin-gold conjugates and DiI and ge-
netic markers including Hoxb2-lacZ and green fluores-
cent protein have been employed in tracing migrating

neural crest cells. The labelling procedures and the
strength and weaknesses of the tracing methods are
reviewed herein.

Copyright © 2003 S. Karger AG, Basel

Introduction

Cell migration is a major feature of morphogenesis in
animals. Cells leave their place of origin and move over
long distances along different migratory pathways to their
final location where they undergo differentiation. This
kind of directed movement of cells from one location to
another can be involved in the rearrangement of cell
layers, changes in the shape of a developing structure,
assignment of cell fate and tissue patterning. Examples of
migrating cells during early embryonic development in-
clude the haematopoietic stem cells, pigment precursor
cells, primordial germ cells and ingressing ectodermal
cells through the primitive streak.

During the early development of the central nervous
system, cell migration is also a very important morphoge-
netic process. In humans, from about the 8th week of ges-
tation onwards, postmitotic neuroblasts derived from the
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ventricular zone start their radial migration along radial
glial cells to form the cortical plate between the subplate
and the marginal zone in an inside-out gradient [1–5]. It
has been shown that the pyramidal neurons of the cortex
mostly originate in the ventricular zone, whereas the
majority of the cortical interneurons appear to be derived
from the ganglionic eminence, which is an enlarged struc-
ture on the basolateral floor of the lateral ventricle. These
interneurons first migrate tangentially through the inter-
mediate zone and then move along the radial glial fibers
to reach their cortical locations [6].

Another group of migrating cells in the developing ner-
vous system are the neural crest cells, which originate from
the dorsal part of the neural tube. They are capable of
migrating over long distances to colonize different regions
of the embryo where they give rise to a variety of tissues
including dorsal root ganglia, parasympathetic ganglia,
adrenal medulla, pigment cells and craniofacial structures
[7]. Investigations of migrating neural crest cells in mam-
mals have been difficult, partly because migrating neural
crest cells usually do not exhibit special morphological fea-
tures which can allow them to be distinguished from their
neighboring cells and partly because specific cell markers
which can label migrating cells throughout their migration
from their origin to their final location are not available.
This contrasts with the situation in the avian embryo,
where use of the technique of quail-chick chimaeras [8] has
provided a wealth of information on neural crest migra-
tion. Hence, different experimental strategies have been
devised to trace migrating cells at different developmental
stages of mammalian development.

In this short review, we have no intention of providing
an exhaustive summary of tracing strategies, but, instead,
we focus on the methods that have been used in our labo-
ratories to track down the migration of neural crest cells in
the mouse in the hope that our experience can help to pro-
vide hints or clues for designing methods to trace other
types of migrating cells.

Extrinsic, Intrinsic and Genetic Cell Markers

Experimental strategies for following cell migration
usually require a cell-labelling method to identify the
otherwise morphologically indistinguishable cell type.
When a cell marker is employed, it should ideally be:
(1) cell localized: the marker remains associated with the
cell until the cell divides, and following cell division, the
marker is passed on to the cell’s mitotic descendants;
(2) developmentally neutral: the marker does not perturb

developmental processes in any way; (3) specific: the
marker differentially labels the cell to be followed; (4) sta-
ble: the marker is stable during the time period of interest
and is not diluted upon cell division; (5) easily and reli-
ably detectable: the marker can be easily visualized in a
variety of tissue preparations such as living cells, whole
mount tissues and paraffin or frozen sectioned tissues;
and (6) compatible with other markers: the marker can be
simultaneously visualized with other markers.

For decades, extrinsic cell markers have been used for
tracing migrating cells. Vital dyes such as Nile blue sul-
fate, neutral red and Bismark brown were used as cell
markers by direct in situ application [9–11] or grafting an
appropriately labelled piece of tissue to an unlabelled
recipient [11, 12]. Useful information on neural crest cell
migration has also been obtained by using tritiated thymi-
dine to label embryos from which donor tissues were iso-
lated and grafted to unlabelled embryos [13–18]. These
cell markers, however, suffer from the problems of dilu-
tion as a result of cell division, a lack of specificity due to
diffusion to neighbouring unlabelled cells [19] and, in
some cases, a certain level of cytotoxicity. Later, more
extrinsic markers emerged, which include lectin conju-
gates (e.g. wheat germ agglutinin-gold conjugates (WGA-
Au) [20–23]), carbocyanine dyes (e.g. 1,1-dioctadecyl-
3,3,3),3)-tetramethylindocarbocyanine perchlorate (DiI),
DiO [24–28]), carboxyfluorescent diacetate (e.g. CFSE
[29–33]) and lysinated rhodamine dextran [34, 35]. These
markers are more cell localized, give a stronger signal, are
easier to detect and are less toxic to cells. In addition,
these markers are readily available, easy to prepare for
labelling and relatively inexpensive.

Besides the extrinsic markers, the use of intrinsic
markers has also been explored for many years. Early
studies made use of cytological features such as cytoplas-
mic inclusions (e.g. pigments, yolk granules), RNA con-
tent, cell or nuclear size and differential staining proper-
ties [36, 37]. While these markers are useful in identifying
clusters of neural crest cells and do not have the dilution
problem over cell divisions, difficulties in localizing iso-
lated cells arise when the cells are migrating within the
mesenchyme. More recent advances in molecular technol-
ogy have enabled the use of antibodies or probes to detect
expression of neural crest-specific molecules, and these
techniques have become the mainstay of studies of mam-
malian neural crest cell migration. Among the ‘expression
markers’ of neural crest cells, HNK1/NC1 has contrib-
uted much to our understanding of the early steps of
migration in avian and rat embryos. However, it is not
expressed in mouse neural crest cells and is neither a per-
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manent nor a specific marker for neural crest cells of other
species. HNK1/NC1 is expressed in various other cell
types, including the neural tube, perichondrium and heart
[38–40]. Other molecules which are expressed by neural
crest cells or their derivatives include vimentin-related
4E9R antigens [41], RhoB [42, 43], Pax 3 [44], Sox 10 [45,
46], Hoxa-3 [47], Foxd3 [48], CrabpI [49], Prx1 and 2
[50], c-met [51], MASH1 [52–55], Phox2a [56–58],
Phox2b [57–59], AP-2 [60, 61], 5-HT2B receptor [62],
tyrosinase [63], receptor tyrosine kinase Ret [64–68], neu-
rotropin receptor p75NTR [53, 69, 70], endothelin receptor
B [71] and tyrosine hydroxylase [72–74]. Detection of
these molecules has yielded significant information on the
migration and development of neural crest cells. The
problems associated with these markers are as follows:
(1) they may be expressed in non-neural crest tissues;
(2) they may not be expressed in all of the migrating neu-
ral crest cells and (3) they may not be expressed in neural
crest cells, throughout their migration from their origin to
their site of differentiation.

Another approach to tracing migrating neural crest
cells is genetic labelling. Replication-defective retrovi-
ruses carrying the marker gene lacZ (which encodes the
protein ß-galactosidase) have been used as markers by
either direct introduction into the neural crest migratory
pathway to label the migrating neural crest cells [75] or by
infection of neural tube fragments which were then
grafted isotopically into uninfected host embryos [76, 77].
Multiple lines of transgenic mice have also been generated
that overexpress lacZ under the control of different types
of promoters or enhancers with the aim of identifying
transgenes that are expressed specifically in the neural
crest cell population. The dopamine ß-hydroxylase-lacZ
transgenic marker which is expressed by enteric neural
crest cells has been used to study the aberrant migration of
neural crest cells in mutant mice [78], while a mouse line
expressing a lacZ reporter in the neural crest cells under
the control of the Wnt-1 enhancer has been employed for
studying the defect in neural crest development [79].
Recently, a powerful technique has been introduced, by
which neural crest cells are caused to permanently express
lacZ following Cre-mediated recombination under con-
trol of the Wnt1 promoter [80]. Transgenic embryos
which ubiquitously express a marker transgene (e.g. Rosa
26-hPAP and Rosa 26-EGFP [81], X-linked HMG-CoA-
lacZ [82]) can also be potential sources of labelled cells for
the production of chimaeric embryos in studies of neural
crest cell migration.

In the following sections, two extrinsic markers, name-
ly WGA-Au and DiI, and two genetic markers, namely a

Hoxb2-lacZ construct and a green fluorescent protein
(GFP) vector, are taken as examples to illustrate how they
have been used as markers for neural crest cells.

WGA-Au and DiI

The lectin WGA, with a molecular mass of 35,000, is
known to bind to N-acetyl glucosamine and sialic acid res-
idues on the cell surface. After binding to the cell surface,
it is quickly engulfed into the cytoplasm by absorptive
endocytosis [83]. When tagged with gold particles, WGA
can be easily localized intracellularly by electron micros-
copy or light microscopy using either dark field illumina-
tion [20] or following silver enhancement staining, where
the gold particles are greatly enlarged by deposition of
silver granules on their surface [22, 23, 84]. Alternatively,
WGA can also be localized by immunohistochemical
methods using an antibody against WGA [85, 86]. WGA
is not recycled to the plasma membrane following endocy-
tosis, even though the binding sugar residues may resur-
face [87], thus minimizing the chance of WGA being
transferred to neighboring cells. Ultrastructural studies
also show that WGA-Au particles remain within intracel-
lular vacuoles and do not appear in the extracellular space
[20, 22]. Studies of double-injected chimaeras, in which
two separate populations of labelled neural crest cells, one
labelled with WGA-Au and the other with thymidine,
were injected into a single embryo, indicate no transfer of
markers between populations even when the two popula-
tions were mixed together [86, 88]. At the concentration
used for labelling, WGA-Au does not perturb the normal
development of embryonic cells or other cell types such as
neurons [22, 86, 88–92]. However, WGA-Au can only be
used as a short-term marker because it becomes diluted in
the rapidly dividing neural crest population. We find that
the amount of WGA-Au within cells diminishes below
detection level 24–48 h after labelling.

Another commonly used extrinsic cell marker is the
fluorescent carbocyanine dye DiI. DiI is hydrophobic and
lipophilic, and thus easily intercalates into almost all cell
membranes that it contacts [93]. Diffusion of DiI from
one labelled cell to another appears to be minimal [25, 94,
95]. At the labelling concentration, adverse effects on neu-
ral crest development and cellular toxicity usually ob-
served at high DiI concentrations are not evident [25, 95–
97]. Furthermore, dilution of DiI over cell divisions is not
such a great problem as for WGA-Au, owing to the intense
fluorescent signal of DiI.
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Fig. 1. a Photomicrograph showing labelling
of a hindbrain neural crest region with
WGA-Au solution using a micromanipula-
tor. A mouse embryo with its yolk sac intact
is held by the holding pipette (H) using slight
suction, and the injection pipette (I) loaded
with the WGA-Au solution (original colour:
red) at its tip has been pushed through the
yolk sac and amnion to enter the amniotic
cavity. A small amount of the WGA-Au solu-
tion is being released in the vicinity of the
neural crest of the hindbrain region. Bar:
250 Ìm. b Two hours after labelling, WGA-
Au-labelled cells carrying dark intracellular
granules (arrows) are found in the neural
crest region. Bar: 50 Ìm. c Twenty-four
hours after labelling, WGA-Au-labelled cells
(arrows) can be detected migrating in the
mesenchyme, while some have already ar-
rived at regions lateral to the developing
pharynx (Ph). Bar: 100 Ìm.

Microinjection and Whole Embryo Culture

Three techniques are commonly used for introducing
WGA-Au or DiI into mouse neural crest cells. In blanket
labelling, WGA-Au or DiI is injected into the lumen of the
neural tube with the aid of a micromanipulator and the
dye labels all neural tube cells, including pre-migratory
neural crest [25, 95, 98]. A second technique is focal label-
ling, where a small amount of concentrated WGA-Au or
DiI is placed directly to the neural crest region (fig. 1a).
With focal labelling, a small population of neural crest
cells can be labelled at a selected axial level and cell migra-
tion can be followed over time (fig. 1b, c). The third tech-
nique is grafting of WGA-Au- or DiI-labelled tissues into
unlabelled host embryos. Neural tubes are first isolated
from mouse embryos by microdissection following dis-
pase or trypsin-pancreatin digestion [22, 99]. The neural
tubes are then labelled with WGA-Au or DiI by immer-
sion in the labelling solution for several minutes before
tissue fragments are dissected from the neural crest re-
gion. The labelled neural crest fragments are then mi-
croinjected into unlabelled host embryos [22], and the
migration of the labelled neural crest cells can be followed
against the unlabelled background of the host embryo.

As the success rate of re-implanting post-implantation
mouse embryos back into the uterus is extremely low
[100], the most viable approach is to maintain embryos
following labelling in vitro, using the method of whole
embryo culture. Embryos whose visceral yolk sac and
amnion are intact are grown in rolling bottles containing a
culture medium in a thermostatic environment [101,
102]. This in vitro method enables rodent embryos ex-
planted as early as the egg-cylinder stage to develop nor-
mally for up to 96 h, during which time the major organ
rudiments are formed at a rate comparable to that in vivo
[22, 101, 103–105]. The whole embryo culture method
has been successfully employed in our laboratories in
studies of teratogenic effects of drugs [106–109], limb bud
regeneration [110, 111], neurulation [112–114], primor-
dial germ cell migration [115] and neural crest cell migra-
tion [22, 23, 116].

Hoxb2-lacZ Construct

Genetic labelling is a powerful approach for tracing the
migration of neural crest cells. Hox genes are known for
their role in specifying regional characteristics along the
anterior-posterior axis, and a combination of Hox genes
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Fig. 2. a Diagram showing the Hoxb2-lacZ
DNA construct used for generating transgen-
ic embryos [for details of the construct, see
ref. 121, 122, 135] [for vector information,
see ref. 136]. b A transgenic embryo showing
positive cells in the pre-otic hindbrain, crani-
al mesenchyme and branchial arch regions
(arrows). Also note that somites and the
heart are also positive. c A transverse section
of a transgenic embryo at the pre-otic hind-
brain level after WGA-Au labelling. The
counter-staining (eosin) has been filtered out
during photography and does not show up in
this photomicrograph. Hence, only the lacZ-
expressing cells show positive staining (light
black, original colour was blue). Note that
WGA-Au-positive cells (dark black, original
colour was black) are also lacZ positive (ar-
rows). NT = Neural tube; Ph = pharynx. Bar:
500 Ìm in b and 25 Ìm in c.
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expressed in the various regions of the neural crest speci-
fies aspects of its developmental fate [117–120]. In stud-
ies of the regulatory elements that mediate the patterns of
Hox gene expression, a Hoxb2-lacZ construct (fig. 2a) was
used to produce transgenic mouse lines [121, 122]. It was
found that Hoxb2-lacZ is expressed in the pre-otic hind-
brain neural tube and in the neural crest cells migrating
from this region towards the branchial arches (fig. 2b).
Hoxb2-lacZ is not expressed in other regions of the brain,
although it is expressed in the somites and developing
heart. When the pre-otic hindbrain neural crest of trans-
genic embryos is labelled with WGA-Au, most of the
WGA-Au-labelled neural crest cells also express the trans-
gene (fig. 2c), indicating that the Hoxb2-lacZ construct
can be potentially used as a marker to specifically label the
pre-otic hindbrain neural crest cells.

GFP Vector

GFP was originally introduced as a reporter gene for
monitoring the cell-specific control of gene expression
and protein localization in both prokaryotic and eukary-
otic systems [123]. By microinjection of GFP mRNA into
early blastomeres of mouse embryos, GFP was used as a
marker for tracing the fate of embryonic stem cells in liv-
ing mouse embryos [124]. Recently, GFP has been widely
used as a reporter in various studies using different tech-
niques for gene transfer [125–131]. Among these tech-
niques, electroporation can generate a unidirectional cur-
rent which enables targeted delivery of a GFP expression
vector to a specific embryonic site [130–133]. Hence,
using electroporation, the dorsal regions of the embryo,
including the neural crest, can be specifically labelled with
a GFP vector (fig. 3a, b). Although the labelling efficacy is
only around 40%, successfully labelled embryos exhibit
strong GFP signals, which may last for up to 8–10 days
[130] and can be easily detected either in living tissues or
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Fig. 3. Photomicrographs showing trans-
verse sections of neural tubes after labelling
with GFP by electroporation. Plasmid DNA
encoding an enhanced GFP, driven by a
CMV promoter, was microinjected into the
lumen of the neural tube, and the positive
electrode (+) was placed either close to the
ventral side (a) or dorsal side (b) of the neu-
ral tube (outlined by the dotted line). Note
that GFP-positive cells in both paraffin sec-
tions (a) and cryostat sections (b) are found
on the same side as the positive electrode.
Bar: 20 Ìm in a and 100 Ìm in b.

in tissue sections using epifluorescence microscopy or
confocal microscopy. The GFP signals are well preserved
after fixation in 4% paraformaldehyde, during standard
procedures for both paraffin (fig. 3a) and cryostat section-
ing (fig. 3b) [134]. Therefore, when coupled with whole
embryo culture and tissue transplantation, electropora-
tion of a GFP vector into the pre-migratory neural crest
can provide an alternative method for tracing the migra-
tion of neural crest cells.

Concluding Remarks

An ideal marker to label mammalian neural crest cells
throughout their migration has yet to be found, and differ-
ent experimental strategies have been devised to follow

the migration and fate of neural crest cells in different
regions of the embryo. Depending on the objectives of
the study, appropriate rather than ideal markers have
been used. It is hoped that molecular techniques com-
bined with various manipulations such as microinjec-
tion, tissue transplantation and whole embryo culture
can help to improve our understanding of neural crest
development.
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