28 research outputs found

    Capacitance Performance of Subā€‘2 nm Graphene Nanochannels in Aqueous Electrolyte

    No full text
    Molecular dynamics simulations were used to explain the origin and properties of electrical double-layer capacitance in short graphene nanochannels with width below 2 nm. The results explain the previously reported experimental result on the nonmonotonic dependence of the capacitance with the channel width. The mechanism for the anomalous increase of the capacitance in sub-1 nm in pore diameter is attributed here to the width-dependent radial location of counterions in the nanochannels and the restricted number of co-ions. Decrease of the channel width lowers the number of co-ions and positions the counterions closer to the channel walls. For nanochannels with width ranging from 1 to 2 nm, co-ions are allowed to enter the nanochannel, and both types of ions assume alternating layered distributions leading to the decrease of the capacitance. Voltage is another control parameter which allows understanding capacitance in graphene nanochannels. As the voltage increases, due to limited space near the charged surface, more counterions need to be located in the center of the nanochannel, resulting in further capacitance decrease

    Intramolecular Cā€“H Bond Activation in Bridged Dicyclopentadienyl Dimethyl Dinuclear Complexes

    No full text
    Photolysis of the doubly bridged dicyclopentadienyl dimethyl dinuclear complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­M<sub>2</sub>(CO)<sub>4</sub>Me<sub>2</sub> (M = Ru, R = H (<b>2a</b>), <sup><i>t</i></sup>Bu (<b>2b</b>); M = Fe, R = H (<b>2c</b>)) in benzene yields the corresponding methylene-bridged complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­M<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)Ā­(Ī¼-CH<sub>2</sub>) (<b>3a</b>ā€“<b>c</b>) and the Mā€“M-bonded complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­M<sub>2</sub>(CO)<sub>4</sub> (<b>1a</b>ā€“<b>c</b>). Irradiation of the analogous diethyl complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Ru<sub>2</sub>(CO)<sub>4</sub>Et<sub>2</sub> (<b>4</b>) affords only <b>1a</b>. Unlike the case for the doubly bridged complexes, photolysis of the singly bridged dicyclopentadienyl dimethyl diruthenium complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(EMe<sub>2</sub>)]Ā­Ru<sub>2</sub>(CO)<sub>4</sub>Me<sub>2</sub> (E = C (<b>5a</b>); E = Si (<b>5b</b>)) in benzene yields the corresponding ā€œtwistedā€ ruthenium methyl complexes with a cyclopentadienylā€“Ru Ļƒ bond (Ī·<sup>5</sup>,Ī·<sup>5</sup>:Ī·<sup>1</sup>-C<sub>5</sub>H<sub>4</sub>(EMe<sub>2</sub>)Ā­C<sub>5</sub>H<sub>3</sub>)Ā­[RuĀ­(CO)<sub>2</sub>]Ā­[RuĀ­(CO)<sub>2</sub>Me] (<b>6a</b>,<b>b</b>) and the similar phenyl complexes (Ī·<sup>5</sup>,Ī·<sup>5</sup>:Ī·<sup>1</sup>-C<sub>5</sub>H<sub>4</sub>(EMe<sub>2</sub>)Ā­C<sub>5</sub>H<sub>3</sub>)Ā­[RuĀ­(CO)<sub>2</sub>]Ā­[RuĀ­(CO)<sub>2</sub>Ph] (<b>7a</b>,<b>b</b>), from reaction with the benzene solvent. Plausible mechanisms for the formation of the different types of products are proposed involving intramolecular Cā€“H bond activation. The molecular structures of <b>2a</b>,<b>c</b>, <b>3a</b>,<b>c</b>, <b>4</b>, <b>5a</b>, <b>6a</b>, and <b>7b</b>, determined by X-ray diffraction, are also presented

    Effect of user mobility and channel fading on the outage performance of UAV communications

    No full text
    Many wireless networks operate in a mobile environment with randomly moving user terminals. This letter analytically characterizes the impact of ground user mobility, propagation environment and channel fading on the outage performance of unmanned aerial vehicle (UAV) communications. Closed-form expressions for the outage probability using the random waypoint model for ground user mobility, UAV channel models for different propagation environments and the Nakagami- {m} model for fading channels are derived. Furthermore, the outage analysis takes into account the effect of co-channel interference by both the stationary and mobile users. Numerical results are presented to demonstrate the interplay between the communication performance and the system parameters

    Intramolecular Cā€“H Bond Activation in Bridged Dicyclopentadienyl Dimethyl Dinuclear Complexes

    No full text
    Photolysis of the doubly bridged dicyclopentadienyl dimethyl dinuclear complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­M<sub>2</sub>(CO)<sub>4</sub>Me<sub>2</sub> (M = Ru, R = H (<b>2a</b>), <sup><i>t</i></sup>Bu (<b>2b</b>); M = Fe, R = H (<b>2c</b>)) in benzene yields the corresponding methylene-bridged complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­M<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)Ā­(Ī¼-CH<sub>2</sub>) (<b>3a</b>ā€“<b>c</b>) and the Mā€“M-bonded complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­M<sub>2</sub>(CO)<sub>4</sub> (<b>1a</b>ā€“<b>c</b>). Irradiation of the analogous diethyl complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub>R)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Ru<sub>2</sub>(CO)<sub>4</sub>Et<sub>2</sub> (<b>4</b>) affords only <b>1a</b>. Unlike the case for the doubly bridged complexes, photolysis of the singly bridged dicyclopentadienyl dimethyl diruthenium complexes [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(EMe<sub>2</sub>)]Ā­Ru<sub>2</sub>(CO)<sub>4</sub>Me<sub>2</sub> (E = C (<b>5a</b>); E = Si (<b>5b</b>)) in benzene yields the corresponding ā€œtwistedā€ ruthenium methyl complexes with a cyclopentadienylā€“Ru Ļƒ bond (Ī·<sup>5</sup>,Ī·<sup>5</sup>:Ī·<sup>1</sup>-C<sub>5</sub>H<sub>4</sub>(EMe<sub>2</sub>)Ā­C<sub>5</sub>H<sub>3</sub>)Ā­[RuĀ­(CO)<sub>2</sub>]Ā­[RuĀ­(CO)<sub>2</sub>Me] (<b>6a</b>,<b>b</b>) and the similar phenyl complexes (Ī·<sup>5</sup>,Ī·<sup>5</sup>:Ī·<sup>1</sup>-C<sub>5</sub>H<sub>4</sub>(EMe<sub>2</sub>)Ā­C<sub>5</sub>H<sub>3</sub>)Ā­[RuĀ­(CO)<sub>2</sub>]Ā­[RuĀ­(CO)<sub>2</sub>Ph] (<b>7a</b>,<b>b</b>), from reaction with the benzene solvent. Plausible mechanisms for the formation of the different types of products are proposed involving intramolecular Cā€“H bond activation. The molecular structures of <b>2a</b>,<b>c</b>, <b>3a</b>,<b>c</b>, <b>4</b>, <b>5a</b>, <b>6a</b>, and <b>7b</b>, determined by X-ray diffraction, are also presented

    Reactions of SnMe<sub>2</sub>-Bridged Bis(cyclopentadienes) with Iron Pentacarbonyl: Migration of the SnMe<sub>2</sub> Group

    No full text
    In reactions of the singly bridged bisĀ­(cyclopentadiene) (SnMe<sub>2</sub>)Ā­(<sup><i>t</i></sup>BuC<sub>5</sub>H<sub>4</sub>)<sub>2</sub> (<b>1</b>) or the doubly bridged bisĀ­(cyclopentadienes) (SiMe<sub>2</sub>)Ā­(SnMe<sub>2</sub>)Ā­(RC<sub>5</sub>H<sub>3</sub>)<sub>2</sub> (R = H (<b>2</b>), R = <sup><i>t</i></sup>Bu (<b>3</b>)) with FeĀ­(CO)<sub>5</sub> in refluxing xylene, the bridging SnMe<sub>2</sub> group migrates from the ligand to the iron atoms to give compounds (<b>5</b>, <b>7</b>, <b>9a</b>,<b>b</b>) containing the Feā€“Snā€“Fe units, together with the corresponding destannylated products (<b>6</b>, <b>8</b>, <b>10a</b>,<b>b</b>); the bridging SiMe<sub>2</sub> group (in <b>2</b> and <b>3</b>) does not migrate. However, in the reaction of the doubly bridged ligand (GeMe<sub>2</sub>)Ā­(SnMe<sub>2</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>)<sub>2</sub> (<b>4</b>) with FeĀ­(CO)<sub>5</sub>, the SnMe<sub>2</sub> group undergoes a similar migration to produce the complex GeMe<sub>2</sub>[(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)<sub>2</sub>]<sub>2</sub>SnMe<sub>2</sub> (<b>12</b>), containing the Feā€“Snā€“Fe unit, both SnMe<sub>2</sub> and GeMe<sub>2</sub> groups migrate from the ligand to the iron atoms to yield the product [(GeMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)<sub>2</sub>]Ā­[(SnMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)<sub>2</sub>] (<b>11</b>), containing one Feā€“Ge bond and one Feā€“Sn bond, or the SnMe<sub>2</sub> group is cleaved to afford the destannylation product GeMe<sub>2</sub>[(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)]<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>13</b>). The stability of complexes <b>5</b>, <b>7</b>, and <b>12</b> containing the Feā€“Snā€“Fe unit toward heat and light was also studied. The molecular structures of <b>9a</b>,<b>b</b>, <b>11</b>, and <b>12</b> were determined by X-ray diffraction

    Direction Dependence of Resistive-Pulse Amplitude in Conically Shaped Mesopores

    No full text
    Conically shaped pores such as glass pipets as well as asymmetric pores in polymers became an important analytics tool used for the detection of molecules, viruses, and particles. Electrokinetic or pressure driven passage of single particles through a single pore causes a transient change of the transmembrane current, called a resistive-pulse, whose amplitude is the measure of the particle volume. The shape of the pulse reflects the pore topography, and in a conical pore, resistive pulses have a shape of a tick point. Passage of particles in both directions was reported to produce pulses of the same amplitude and shapes that are mirror images of each other. In this manuscript we identify conditions at which the amplitude of resistive-pulses in a conical mesopore is direction dependent. Neutral particles entering the pore from the larger entrance of a conical pore, called the base, block the current to a larger extent than the particles traveling in the opposite direction. Negatively charged particles on the other hand size larger when being transported in the direction from tip to base. The findings are explained via voltage-regulated ionic concentrations in the pore such that for one voltage polarity a weak depletion zone is formed, which increases the current blockage caused by a particle. For the opposite polarity, an enhancement of ionic concentrations was predicted. The findings reported here are of crucial importance for the resistive-pulse technique, which relates the current blockage with the size of the passing object

    Reactions of SnMe<sub>2</sub>-Bridged Bis(cyclopentadienes) with Iron Pentacarbonyl: Migration of the SnMe<sub>2</sub> Group

    No full text
    In reactions of the singly bridged bisĀ­(cyclopentadiene) (SnMe<sub>2</sub>)Ā­(<sup><i>t</i></sup>BuC<sub>5</sub>H<sub>4</sub>)<sub>2</sub> (<b>1</b>) or the doubly bridged bisĀ­(cyclopentadienes) (SiMe<sub>2</sub>)Ā­(SnMe<sub>2</sub>)Ā­(RC<sub>5</sub>H<sub>3</sub>)<sub>2</sub> (R = H (<b>2</b>), R = <sup><i>t</i></sup>Bu (<b>3</b>)) with FeĀ­(CO)<sub>5</sub> in refluxing xylene, the bridging SnMe<sub>2</sub> group migrates from the ligand to the iron atoms to give compounds (<b>5</b>, <b>7</b>, <b>9a</b>,<b>b</b>) containing the Feā€“Snā€“Fe units, together with the corresponding destannylated products (<b>6</b>, <b>8</b>, <b>10a</b>,<b>b</b>); the bridging SiMe<sub>2</sub> group (in <b>2</b> and <b>3</b>) does not migrate. However, in the reaction of the doubly bridged ligand (GeMe<sub>2</sub>)Ā­(SnMe<sub>2</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>)<sub>2</sub> (<b>4</b>) with FeĀ­(CO)<sub>5</sub>, the SnMe<sub>2</sub> group undergoes a similar migration to produce the complex GeMe<sub>2</sub>[(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)<sub>2</sub>]<sub>2</sub>SnMe<sub>2</sub> (<b>12</b>), containing the Feā€“Snā€“Fe unit, both SnMe<sub>2</sub> and GeMe<sub>2</sub> groups migrate from the ligand to the iron atoms to yield the product [(GeMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)<sub>2</sub>]Ā­[(SnMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)<sub>2</sub>] (<b>11</b>), containing one Feā€“Ge bond and one Feā€“Sn bond, or the SnMe<sub>2</sub> group is cleaved to afford the destannylation product GeMe<sub>2</sub>[(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­FeĀ­(CO)]<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>13</b>). The stability of complexes <b>5</b>, <b>7</b>, and <b>12</b> containing the Feā€“Snā€“Fe unit toward heat and light was also studied. The molecular structures of <b>9a</b>,<b>b</b>, <b>11</b>, and <b>12</b> were determined by X-ray diffraction

    Reactions of Doubly SiMe<sub>2</sub>-Bridged Bis(cyclopentadienyl) Complexes of Molybdenum and Iron Carbonyls: Competitive Ring-to-Metal Migrations of Hydrogen and SiMe<sub>2</sub>

    No full text
    Reaction of the doubly bridged bisĀ­(cyclopentadiene) (C<sub>5</sub>H<sub>4</sub>(SiMe<sub>2</sub>))<sub>2</sub> (<b>1</b>) with MoĀ­(CO)<sub>6</sub> in refluxing xylene gave the corresponding dinuclear molybdenum carbonyl complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>3</b>) and the desilylated product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>)]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>6</b>), together with the singly SiMe<sub>2</sub>SiMe<sub>2</sub>-bridged dinuclear molybdenum product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>SiMe<sub>2</sub>)]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>5</b>) and the novel complex [(SiMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­MoĀ­(CO)<sub>3</sub>]<sub>2</sub> (<b>4</b>) containing two Moā€“Si bonds. This diversity of products is caused by similar ring-to-metal migrating abilities of the hydrogen and SiMe<sub>2</sub> groups and their competitive migration during the reactions. Reaction of the dihydride <i>cis</i>-[(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Mo<sub>2</sub>(CO)<sub>6</sub>(H)<sub>2</sub> (<b>7c</b>) in refluxing xylene also afforded the above products except <b>4</b>, which suggests that <b>7c</b> might be intermediate precursor to <b>3</b>, <b>5</b>, and <b>6</b>. Similar treatment of substituted doubly bridged bisĀ­(cyclopentadiene) (C<sub>5</sub>H<sub>3</sub><sup><i>t</i></sup>BuĀ­(SiMe<sub>2</sub>))<sub>2</sub> (<b>2</b>) with MoĀ­(CO)<sub>6</sub> provided the corresponding derivatives (<b>8</b>ā€“<b>10</b>) of the above products and the product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub><sup><i>t</i></sup>Bu)Ā­MoĀ­(CO)<sub>3</sub>]<sub>2</sub> (<b>11</b>), in which both SiMe<sub>2</sub> groups are removed. Heating a mixture of <b>1</b> and FeĀ­(CO)<sub>5</sub> in xylene yielded the normal dinuclear iron complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Fe<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>12</b>) and the desilylated product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>)]Ā­Fe<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>14</b>), together with the novel complex (SiMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)Ā­(Ī·<sup>5</sup>:Ī·<sup>1</sup>-C<sub>5</sub>H<sub>3</sub>)Ā­[(SiMe<sub>2</sub>)Ā­FeĀ­(CO)<sub>2</sub>]Ā­[FeĀ­(CO)<sub>2</sub>)] (<b>13</b>) containing one Feā€“Si bond. However, similar treatment of <b>2</b> with FeĀ­(CO)<sub>5</sub> provided only the corresponding dinuclear complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub><sup><i>t</i></sup>Bu)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Fe<sub>2</sub>(CO)<sub>4</sub> (<b>15</b>), in which the Feā€“Fe bond (2.8205(9) ƅ) is the longest among all dimeric Cpā€²<sub>2</sub>Fe<sub>2</sub>(CO)<sub>4</sub> analogues. A plausible mechanism for the formation of the different types of products is proposed. Molecular structures of <b>4</b>, <b>9c</b>, <b>13</b>, and <b>15</b> determined by X-ray diffraction are also presented

    Reactions of Doubly SiMe<sub>2</sub>-Bridged Bis(cyclopentadienyl) Complexes of Molybdenum and Iron Carbonyls: Competitive Ring-to-Metal Migrations of Hydrogen and SiMe<sub>2</sub>

    No full text
    Reaction of the doubly bridged bisĀ­(cyclopentadiene) (C<sub>5</sub>H<sub>4</sub>(SiMe<sub>2</sub>))<sub>2</sub> (<b>1</b>) with MoĀ­(CO)<sub>6</sub> in refluxing xylene gave the corresponding dinuclear molybdenum carbonyl complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>3</b>) and the desilylated product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>)]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>6</b>), together with the singly SiMe<sub>2</sub>SiMe<sub>2</sub>-bridged dinuclear molybdenum product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>SiMe<sub>2</sub>)]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>5</b>) and the novel complex [(SiMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­MoĀ­(CO)<sub>3</sub>]<sub>2</sub> (<b>4</b>) containing two Moā€“Si bonds. This diversity of products is caused by similar ring-to-metal migrating abilities of the hydrogen and SiMe<sub>2</sub> groups and their competitive migration during the reactions. Reaction of the dihydride <i>cis</i>-[(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Mo<sub>2</sub>(CO)<sub>6</sub>(H)<sub>2</sub> (<b>7c</b>) in refluxing xylene also afforded the above products except <b>4</b>, which suggests that <b>7c</b> might be intermediate precursor to <b>3</b>, <b>5</b>, and <b>6</b>. Similar treatment of substituted doubly bridged bisĀ­(cyclopentadiene) (C<sub>5</sub>H<sub>3</sub><sup><i>t</i></sup>BuĀ­(SiMe<sub>2</sub>))<sub>2</sub> (<b>2</b>) with MoĀ­(CO)<sub>6</sub> provided the corresponding derivatives (<b>8</b>ā€“<b>10</b>) of the above products and the product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub><sup><i>t</i></sup>Bu)Ā­MoĀ­(CO)<sub>3</sub>]<sub>2</sub> (<b>11</b>), in which both SiMe<sub>2</sub> groups are removed. Heating a mixture of <b>1</b> and FeĀ­(CO)<sub>5</sub> in xylene yielded the normal dinuclear iron complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Fe<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>12</b>) and the desilylated product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>)]Ā­Fe<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>14</b>), together with the novel complex (SiMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)Ā­(Ī·<sup>5</sup>:Ī·<sup>1</sup>-C<sub>5</sub>H<sub>3</sub>)Ā­[(SiMe<sub>2</sub>)Ā­FeĀ­(CO)<sub>2</sub>]Ā­[FeĀ­(CO)<sub>2</sub>)] (<b>13</b>) containing one Feā€“Si bond. However, similar treatment of <b>2</b> with FeĀ­(CO)<sub>5</sub> provided only the corresponding dinuclear complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub><sup><i>t</i></sup>Bu)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Fe<sub>2</sub>(CO)<sub>4</sub> (<b>15</b>), in which the Feā€“Fe bond (2.8205(9) ƅ) is the longest among all dimeric Cpā€²<sub>2</sub>Fe<sub>2</sub>(CO)<sub>4</sub> analogues. A plausible mechanism for the formation of the different types of products is proposed. Molecular structures of <b>4</b>, <b>9c</b>, <b>13</b>, and <b>15</b> determined by X-ray diffraction are also presented

    Reactions of Doubly SiMe<sub>2</sub>-Bridged Bis(cyclopentadienyl) Complexes of Molybdenum and Iron Carbonyls: Competitive Ring-to-Metal Migrations of Hydrogen and SiMe<sub>2</sub>

    No full text
    Reaction of the doubly bridged bisĀ­(cyclopentadiene) (C<sub>5</sub>H<sub>4</sub>(SiMe<sub>2</sub>))<sub>2</sub> (<b>1</b>) with MoĀ­(CO)<sub>6</sub> in refluxing xylene gave the corresponding dinuclear molybdenum carbonyl complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>3</b>) and the desilylated product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>)]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>6</b>), together with the singly SiMe<sub>2</sub>SiMe<sub>2</sub>-bridged dinuclear molybdenum product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>SiMe<sub>2</sub>)]Ā­Mo<sub>2</sub>(CO)<sub>6</sub> (<b>5</b>) and the novel complex [(SiMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)Ā­MoĀ­(CO)<sub>3</sub>]<sub>2</sub> (<b>4</b>) containing two Moā€“Si bonds. This diversity of products is caused by similar ring-to-metal migrating abilities of the hydrogen and SiMe<sub>2</sub> groups and their competitive migration during the reactions. Reaction of the dihydride <i>cis</i>-[(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Mo<sub>2</sub>(CO)<sub>6</sub>(H)<sub>2</sub> (<b>7c</b>) in refluxing xylene also afforded the above products except <b>4</b>, which suggests that <b>7c</b> might be intermediate precursor to <b>3</b>, <b>5</b>, and <b>6</b>. Similar treatment of substituted doubly bridged bisĀ­(cyclopentadiene) (C<sub>5</sub>H<sub>3</sub><sup><i>t</i></sup>BuĀ­(SiMe<sub>2</sub>))<sub>2</sub> (<b>2</b>) with MoĀ­(CO)<sub>6</sub> provided the corresponding derivatives (<b>8</b>ā€“<b>10</b>) of the above products and the product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub><sup><i>t</i></sup>Bu)Ā­MoĀ­(CO)<sub>3</sub>]<sub>2</sub> (<b>11</b>), in which both SiMe<sub>2</sub> groups are removed. Heating a mixture of <b>1</b> and FeĀ­(CO)<sub>5</sub> in xylene yielded the normal dinuclear iron complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Fe<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>12</b>) and the desilylated product [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>4</sub>)<sub>2</sub>(SiMe<sub>2</sub>)]Ā­Fe<sub>2</sub>(CO)<sub>2</sub>(Ī¼-CO)<sub>2</sub> (<b>14</b>), together with the novel complex (SiMe<sub>2</sub>)Ā­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>3</sub>)Ā­(Ī·<sup>5</sup>:Ī·<sup>1</sup>-C<sub>5</sub>H<sub>3</sub>)Ā­[(SiMe<sub>2</sub>)Ā­FeĀ­(CO)<sub>2</sub>]Ā­[FeĀ­(CO)<sub>2</sub>)] (<b>13</b>) containing one Feā€“Si bond. However, similar treatment of <b>2</b> with FeĀ­(CO)<sub>5</sub> provided only the corresponding dinuclear complex [(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>2</sub><sup><i>t</i></sup>Bu)<sub>2</sub>(SiMe<sub>2</sub>)<sub>2</sub>]Ā­Fe<sub>2</sub>(CO)<sub>4</sub> (<b>15</b>), in which the Feā€“Fe bond (2.8205(9) ƅ) is the longest among all dimeric Cpā€²<sub>2</sub>Fe<sub>2</sub>(CO)<sub>4</sub> analogues. A plausible mechanism for the formation of the different types of products is proposed. Molecular structures of <b>4</b>, <b>9c</b>, <b>13</b>, and <b>15</b> determined by X-ray diffraction are also presented
    corecore