22 research outputs found

    Capacity of UAV-Enabled Multicast Channel: Joint Trajectory Design and Power Allocation

    Full text link
    This paper studies an unmanned aerial vehicle (UAV)-enabled multicast channel, in which a UAV serves as a mobile transmitter to deliver common information to a set of KK ground users. We aim to characterize the capacity of this channel over a finite UAV communication period, subject to its maximum speed constraint and an average transmit power constraint. To achieve the capacity, the UAV should use a sufficiently long code that spans over its whole communication period. Accordingly, the multicast channel capacity is achieved via maximizing the minimum achievable time-averaged rates of the KK users, by jointly optimizing the UAV's trajectory and transmit power allocation over time. However, this problem is non-convex and difficult to be solved optimally. To tackle this problem, we first consider a relaxed problem by ignoring the maximum UAV speed constraint, and obtain its globally optimal solution via the Lagrange dual method. The optimal solution reveals that the UAV should hover above a finite number of ground locations, with the optimal hovering duration and transmit power at each location. Next, based on such a multi-location-hovering solution, we present a successive hover-and-fly trajectory design and obtain the corresponding optimal transmit power allocation for the case with the maximum UAV speed constraint. Numerical results show that our proposed joint UAV trajectory and transmit power optimization significantly improves the achievable rate of the UAV-enabled multicast channel, and also greatly outperforms the conventional multicast channel with a fixed-location transmitter.Comment: To appear in the IEEE International Conference on Communications (ICC), 201

    Stackelberg game-based optimal electricity trading method for distribution networks with small-micro industrial parks

    Get PDF
    In order to improve the operating benefits of the distribution network (DN) and reduce the energy consumption costs of small-micro industrial parks (SMIPs), a two-layer optimal electricity trading method for DN with SMIPs is proposed. First, based on the Stackelberg game, a multi-objective two-layer optimal trading model for DN and SMIP is established. In the upper layer, the DN agent is regarded as the leader, and a trading model is established with the goal of maximizing the profits of agents. In the lower layer, an energy optimization model is proposed for the SMIP operators, which are regarded as the followers, with the goal of minimizing the operating costs. According to the buying and selling electricity prices at the upper and lower layers, a dynamic pricing strategy is formulated. The Karush–Kuhn–Tucker condition (KKT) is introduced to transform the two-layer model into a single-layer model, and based on linear transformations, the model is further converted into a mixed-integer linear programming model. The transformations aim to address the non-linear issues arising from multivariable coupling between the upper and lower-layer trading models. The simulation results show that the trading strategy proposed in this paper can effectively increase the profit of DNs while reducing the operating costs of SMIPs and can provide a reference for decision-making in the electricity market (EM) with the participation of SMIP

    The Antimicrobial Peptide Mastoparan X Protects Against Enterohemorrhagic Escherichia coli O157:H7 Infection, Inhibits Inflammation, and Enhances the Intestinal Epithelial Barrier

    Get PDF
    Escherichia coli can cause intestinal diseases in humans and livestock, destroy the intestinal barrier, exacerbate systemic inflammation, and seriously threaten human health and animal husbandry development. The aim of this study was to investigate whether the antimicrobial peptide mastoparan X (MPX) was effective against E. coli infection. BALB/c mice infected with E. coli by intraperitoneal injection, which represents a sepsis model. In this study, MPX exhibited no toxicity in IPEC-J2 cells and notably suppressed the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and lactate dehydrogenase (LDH) released by E. coli. In addition, MPX improved the expression of ZO-1, occludin, and claudin and enhanced the wound healing of IPEC-J2 cells. The therapeutic effect of MPX was evaluated in a murine model, revealing that it protected mice from lethal E. coli infection. Furthermore, MPX increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum. SEM and TEM analyses showed that MPX effectively ameliorated the jejunum damage caused by E. coli and increased the number and length of microvilli. In addition, MPX decreased the expression of IL-2, IL-6, TNF-α, p-p38, and p-p65 in the jejunum and colon. Moreover, MPX increased the expression of ZO-1, occludin, and MUC2 in the jejunum and colon, improved the function of the intestinal barrier, and promoted the absorption of nutrients. This study suggests that MPX is an effective therapeutic agent for E. coli infection and other intestinal diseases, laying the foundation for the development of new drugs for bacterial infections

    Identifying Technology Opportunity Using SAO Semantic Mining and Outlier Detection Method: A Case of Triboelectric Nanogenerator Technology

    No full text
    With the high integration of science and technology development, how to early identify technology opportunity is crucial for the governments’ and enterprises’ research and development (R&D) strategic planning and innovation policy to gain a first-mover advantage in the market competition environment. Most researchers have applied Subject-Action-Object (SAO) semantic mining approach or outlier detection method to mine scientific papers or patent information for identifying technology opportunity. However, few researchers have combined information from both scientific papers and patents to identify technology opportunity by integrating SAO semantic mining and outlier detection method. Therefore, this paper proposes a research framework that uses scientific papers and patents as data resources, and integrates SAO semantic mining and outlier detection method to identify technology opportunity. In this framework, we first use the SAO semantic mining method to mine technical problems and solutions contained in scientific papers and patents respectively. Then we conduct comparative analysis to identify potential technology opportunity in the gaps between scientific papers and patents. Secondly, we use a outlier detection method to identify outlier points in scientific papers, and we incorporate the outlier points into the analysis scope of technology opportunity identification. Finally, we combine the results of SAO semantic mining method with outlier detection method, and use expert knowledge to identify technology opportunity. The triboelectric nanogenerator technology is selected as a case study to verify the feasibility of this framework. The results show that the framework can effectively and comprehensively identify technology opportunity from the two levels of technical problems and technical solutions. This paper contributes to technology opportunity study, and will be of interest to triboelectric nanogenerator technology R&D experts

    Element-dependent evolution of chemical short-range ordering tendency of NiCoFeCrMn under irradiation

    No full text
    The evolution of short-range order (SRO) structures under irradiation has a great impact on the mechanical properties of high-entropy alloys. In this study, the atomistic mechanism of the evolution of SRO during and after cascade collisions was investigated in NiCoFeCrMn by multiscale modeling using molecular dynamics and lattice kinetic Monte Carlo simulations. SRO structures could be destructed by cascade collisions in short time and recovered by atomic diffusion in a much longer time. The destruction rate depends on the primary knock-on atom energies in cascade collisions and shows a universal law with respect to the number of replacement-per-atom. The vacancy diffusion simulations reveal that the SRO recovery rates of different element pairs vary significantly due to the distinct diffusion rates. Consequently, the SRO state under irradiation differs from that in thermodynamic equilibrium due to the difference of destruction and recovery rate for each element pair. The evolution of SRO is a result of the competition between the destruction and recovery mechanisms and depends heavily on the irradiation conditions

    Reduced sB7-H3 Expression in the Peripheral Blood of Systemic Lupus Erythematosus Patients

    No full text
    Both membrane-bound and soluble forms of costimulatory molecules play important roles in immune-regulatory networks. B7-H3, a member of the B7 family, has been found with aberrant expression in tumors and infectious disease. However, the significance of sB7-H3 expression in systemic lupus erythematosus (SLE) has not been investigated. Using the peripheral blood of 78 SLE patients, we established a comprehensive database containing clinical data and relevant laboratory tests. We found that sB7-H3 expression in SLE patients was significantly lower compared with the healthy individuals. In addition, sB7-H3 levels in the patients were positively correlated with the disease activity as indicated by SLE disease activity index score, rashes, fever, and inflammatory cytokines. Moreover, sB7-H3 was associated with the counts of red blood cells and hemoglobin. Our findings suggest that sB7-H3 might counteract the aberrant immune response and potentially serve as a monitoring indicator of disease progression and therapeutic target in SLE treatment

    Expression Profiles and Ontology Analysis of Circular RNAs in a Mouse Model of Myocardial Ischemia/Reperfusion Injury

    No full text
    Circular RNAs (circRNAs) play important roles in cellular physiology. The association between circRNAs and myocardial ischemia/reperfusion (I/R) injury remains largely unknown. The aim of this study was to test the effects of myocardial I/R circRNA expression and explore the potential roles of these circRNAs. CircRNAs were screened by high-throughput sequencing, and the expression of dysregulated circRNAs was further validated using quantitative real-time polymerase chain reaction. Nineteen upregulated and 20 downregulated circRNAs were identified. Gene Ontology analysis indicated that the dysregulated transcripts were associated with fundamental pathophysiologic processes. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed significant changes in adherens junction, the HIF-1 signaling pathway, the cell cycle, and the FoxO signaling pathway which have a close relationship with myocardial I/R injury. The circRNA-miRNA analysis demonstrated the broad potential of the differentially expressed circRNAs to regulate target genes by acting on the miRNAs. This study provides a foundation for understanding the roles and mechanisms of circRNAs in myocardial I/R injury

    ZnO Nanoflower-Based NanoPCR as an Efficient Diagnostic Tool for Quick Diagnosis of Canine Vector-Borne Pathogens

    No full text
    Polymerase chain reaction (PCR) is a unique technique in molecular biology and biotechnology for amplifying target DNA strands, and is also considered as a gold standard for the diagnosis of many canine diseases as well as many other infectious diseases. However, PCR still faces many challenges and issues related to its sensitivity, specificity, efficiency, and turnaround time. To address these issues, we described the use of unique ZnO nanoflowers in PCR reaction and an efficient ZnO nanoflower-based PCR (nanoPCR) for the molecular diagnosis of canine vector-borne diseases (CVBDs). A total of 1 mM of an aqueous solution of ZnO nanoflowers incorporated in PCR showed a significant enhancement of the PCR assay with respect to its sensitivity and specificity for the diagnosis of two important CVBDs, Babesia canis vogeli and Hepatozoon canis. Interestingly, it drastically reduced the turnaround time of the PCR assay without compromising the yield of the amplified DNA, which can be of benefit for veterinary practitioners for the improved management of diseases. This can be attributed to the favorable adsorption of ZnO nanoflowers to the DNA and thermal conductivity of ZnO nanoflowers. The unique ZnO nanoflower-assisted nanoPCR greatly improved the yield, purity, and quality of the amplified products, but the mechanism behind these properties and the effects and changes due to the different concentrations of ZnO nanoflowers in the PCR system needs to be further studied
    corecore