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In order to improve the operating benefits of the distribution network (DN) and
reduce the energy consumption costs of small-micro industrial parks (SMIPs), a
two-layer optimal electricity trading method for DNwith SMIPs is proposed. First,
based on the Stackelberg game, a multi-objective two-layer optimal trading
model for DN and SMIP is established. In the upper layer, the DN agent is regarded
as the leader, and a trading model is established with the goal of maximizing the
profits of agents. In the lower layer, an energy optimizationmodel is proposed for
the SMIP operators, which are regarded as the followers, with the goal of
minimizing the operating costs. According to the buying and selling electricity
prices at the upper and lower layers, a dynamic pricing strategy is formulated. The
Karush–Kuhn–Tucker condition (KKT) is introduced to transform the two-layer
model into a single-layer model, and based on linear transformations, the model
is further converted into a mixed-integer linear programming model. The
transformations aim to address the non-linear issues arising from multivariable
coupling between the upper and lower-layer trading models. The simulation
results show that the trading strategy proposed in this paper can effectively
increase the profit of DNs while reducing the operating costs of SMIPs and can
provide a reference for decision-making in the electricity market (EM) with the
participation of SMIP.
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1 Introduction

In recent years, small and micro enterprises have developed rapidly in Zhejiang
Province, China. In order to facilitate the prosperous development of such enterprises,
Zhejiang Province has standardized and renovated the existing small-micro industrial parks
(SMIPs) based on the actual operation. However, the SMIPs do not dispatch enough power
generation and energy storage (ES) devices, which results in a low capacity to withstand the
operating risks. With the rapid development of SMIPs, the demand for electricity trading
between SMIPs and distribution networks (DNs) is constantly increasing. On one hand,
trading electricity with the DNs can help the SMIPs to withstand the operating risks. On the
other hand, an optimal trading electricity strategy can help the SMIPs to save the operating
costs. Then, how to optimize the electricity trading between the DNs and SMIPs is currently
a highly important issue (He et al., 2021).
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As the electricity market (EM) continues to expanding, the
operators and agents in the DNs gradually participate in EM
competition (Jin et al., 2022), and the economic operation of the
DNs has been significantly improved (Li et al., 2023a). A market
simulator for peer-to-peer electricity trading is proposed inKuno et al.
(2022), and a market agent is designed to perform power bidding and
contract processing. Guo et al. (2022) showed that all agents can freely
trade in an asynchronous mode without waiting for idle or inactive
neighboring agents, and the sublinear regret upper bound is proved
for the asynchronous mode, which can maximize the social welfare in
the EM. A real-time congestion management strategy is applied by
Klsch et al. (2022), and the strategy can enable grid-supportive
operation of the operators without interventions. Considering the
characteristic that natural gas can blend with hydrogen, Ding et al.
(2023) proposed a multi-agent electricity–heat–hydrogen trading
model by taking hydrogen produced on the load side. Tan et al.
(2022) treated carbon as a direct trading object and proposed an
internal multi-energy trading mechanism, which adopts an auction
based on the demands for cooling, heating, electricity, and carbon. To
further explore the multi-energy coupling capacity and carbon
reduction potential of the integrated energy systems, Yang M.
et al. (2023) proposed a cooling–heat–electricity–gas collaborative
optimization model of integrated energy systems, given the ladder
carbon trading mechanism and multi-energy demand response. Li Z.
et al. (2023) proposed a medium-term, multi-stage, distributionally
robust optimization scheduling approach for the price-taking of
hydro–wind–solar complementary systems in the EM. A multi-
agent deep reinforcement learning approach combining the multi-
agent actor-critic algorithm with the twin-delayed deep deterministic
policy gradient algorithm is proposed by Chen et al. (2022), and the
proposed approach can handle the high-dimensional continuous
action space and aligns with the nature of peer-to-peer energy
trading. Yang et al. (2022) analyzed the impact of different
bidding decisions on the distribution of wind farm revenues in a
process where the interest of twomarkets is played against each other.
Khaligh et al. (2022) introduced a stochastic agent-based model for
the coordinated scheduling of multi-vector microgrids, considering
interactions between electricity, hydrogen, and gas agents.
Considering the power loss, flexible load demand, and other
operating indicators, to maximize the user and supplier benefits,
the real-time transaction electricity price model of the user side and
the power supply side is constructed by Lyu et al. (2022). In order to
meet the challenge of global low-carbon development, a multi-
objective optimal scheduling model considering the participation
of the park-level integrated energy system in the EM is proposed
by Wang L. et al. (2022), which takes into account multiple
uncertainties on the renewable energy and load. Li et al. (2023c)
analyzed the impact of uncertainties for the multi-energy virtual
power plant on the peak-regulation market, and the operation
mechanism for the multi-energy virtual power plant in the peak-
regulation market is proposed by considering the integrated demand
response. As a user-side system, SMIPs can participate in electricity
trading under the management of SMIP operators (Davoudi and
Moeini-Aghtaie, 2022), which can develop the hierarchical structure
of the EM (Pownall et al., 2021). Meanwhile, the agents in DNs can
link the SMIP with EM (Anwar et al., 2022), which exerts a significant
influence on the energy costs of such parks (Yuan et al., 2022). As
SMIPs participate in electricity trading, how to balance the benefits

between agents and operators, achieve the expected profit of agents,
and reduce the operating costs of operators has become a key concern
in current EM.

Different stakeholders have different optimization goals in EM
trading (Xiao et al., 2021), and a coupling relationship exists among
the EM trading models (Yang et al., 2021). Finding the balanced
benefits in EM trading has become a key way to keep the stability of
the alliances (Cao et al., 2021). To find the balanced benefits in EM
trading, Stackelberg game theory has become an effective tool (Li
et al., 2022). To solve the inherent conflict among the players, a
Stackelberg game-based technique is proposed by Haghifam et al.
(2020), and the distribution system operator attempts to minimize
its operating costs as the leader, while the distributed energy
resource aggregator tends to maximize its profit as the follower.
Huang et al. (2022) proposed a Stackelberg game-based
optimization model for energy service providers and integrated
energy systems based on the collaborative optimization of
integrated energy systems and carbon transaction cost, where the
energy service provider acts as a leader while the integrated energy
systems serve as followers. A Stackelberg game model between the
load aggregator and distribution system operator was proposed by
Xu et al. (2022); the distribution system operator issues subsidies to
decrease the frequency of voltage violations, and the load aggregator
schedules the demand to maximize profits. A trading model based
on the Stackelberg game model was proposed by Wei et al. (2022) to
balance the interests of the supply side and demand side and reduce
carbon emissions. To solve the problems of environmental pollution
and conflict of interests among multiple stakeholders in the
integrated energy system, Wang R. et al. (2022) proposed a novel
collaborative optimization strategy for a low-carbon economy in the
integrated energy system based on the carbon trading mechanism
and Stackelberg game theory. Envelope et al. (2022) proposed a
Stackelberg game-based optimal scheduling model for electro-
thermal integrated energy systems, which seeks to maximize the
revenue of the integrated energy operator and minimize the cost of
users. Pu et al. (2023) constructed a two-stage supply chain
consisting of a manufacturer and a retailer based on the dual-
credit policy, considered three different power structure models,
including the vertical Nash game model, the manufacturer
Stackelberg game model, and the retailer Stackelberg game
model, and explored the operational strategy issues of new
energy vehicle enterprises under the dual-credit policy. Zhang
et al. (2022) took the integrated energy system operator as the
leader and each integrated energy system as the follower to construct
the Stackelberg operation model, and the proposed model is
constructed and solved by the double mutation differential
evolution algorithm. Hua et al. (2023) proposed a framework of
local energy markets to manage this transactive energy and facilitate
the flexibility provision; the decision-making and interactions
between a DN operator and multiple microgrid traders are
formulated as the Stackelberg game-theoretic problem. Fattaheian
et al. (2022) applied the Stackelberg game to model incentivizing
resource scheduling optimization in post-contingency conditions,
and a strong duality condition is used to re-cast the preliminary bi-
level model into a one-level mathematical problem. The pricing
strategies in existing research studies mainly belong to fixed pricing
mechanisms (Du et al., 2022). In the future, as more SMIPs
participate in EM trading, the fixed pricing mechanisms will not
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be satisfied to the flexible EM model. In this context, studying the
dynamic pricing strategies for DN trading with SMIPs to enhance
the economic operation of DNs is highly necessary.

As described previously, a two-layer optimal electricity trading
method for DNs with SMIPs is proposed based on the Stackelberg
game. The main contributions of this paper are summarized
as follows.

(1) A two-layer optimization trading model is established for
DNs and SMIPs, and the competitive game relationship
between different stakeholders in the trading process is
characterized by the Stackelberg game. The paper shows
that through the proposed scheme, the profit of DNs
increases by 14.8% in a typical day, and the operating costs
of SMIPs decreased by 2.5% and 3.8%, respectively.

(2) The Karush–Kuhn–Tucker (KKT) condition and linear
relaxation technique are utilized to transform the proposed
non-linear model into a mixed-integer linear programming
model. This method solves the coupling–nesting problem of
interactive power and electricity price in the proposed model
without any approximation.

(3) To address the disadvantage of fixed pricing mechanisms, a
dynamic pricing strategy is formulated in this paper. The DN
agent sets the dynamic prices to lead the trading behavior of
SMIP operators, and the SMIP operators choose the trading
time to follow the guidance of the DN agent without passive
price reception. Then, the overall profits of both the DN agent
and SMIP operators are greatly improved.

The remainder of this paper is organized as follows. A two-layer
game optimization trading framework for multi-stakeholders is
proposed in Section 2. In addition, a two-layer game
optimization trading model based on the Stackelberg game is
proposed in Section 3. In Section 4, the solution process of the
proposed model is introduced. In Section 5, the case study is
analyzed. The discussion and conclusion are described in Section 6.

2 Two-layer optimization
trading framework

In order to improve the operating benefits of DN and reduce the
energy costs of SMIPs, a two-layer optimization trading framework
for multi-stakeholders is established, as shown in Figure 1.

In the trading framework, the stakeholders include the EM, DN
agent, and SMIP operators. The trading framework is divided into
two layers, with EM and DN agent located in the upper layer and
SMIP operators located in the lower layer. The stakeholders in the
upper and lower layers have different benefits goals, and they
mutually influence each other. In the upper layer, the DN agent
makes decisions on the volume of purchased electricity or sold
electricity based on the needs of EM and SMIPs. If EM supply cannot
meet the demand, electricity trading occurs between two adjacent
DN agents. Additionally, the DN agent will use dynamic trading
prices to encourage the trading of lower-layer SMIP operators. In the
lower layer, SMIP operators will dynamically adjust the outputs of
internal generation units based on the trading prices set by DN
agents, as well as the electricity demand on the user side.

Simultaneously, SMIP operators provide real-time feedback to the
upper layer DN agents regarding the electricity usage strategies. DN
agents, based on the energy consumption situation, dynamically
adjust the trading prices. Through the iterative process between the
upper and lower layers, a balance point that aligns with the interests
of both stakeholders is ultimately determined.

3 Two-layer optimization trading
model based on the Stackelberg game

3.1 Upper-layer optimization model for the
DN agent

In two-layer game optimization trading, the DN agent is
regarded as the leader of the Stackelberg game (Liu et al., 2023),
and an optimization model with the goal of maximizing profits is
established for the DN agent.

max ∑
t

csellt Psell
t Δt −∑

t

cbuyt Pbuy
t Δt+⎡⎣

∑
t

π−
t R

−
t Δt −∑

t

π+
t R

+
t Δt −∑

t

πtRtΔt⎛⎝ ⎞⎠ −∑
t

ctrat Psop
t Δt⎤⎥⎥⎦.

(1)
The optimization model for DNs mainly imposes constraints on

power balance, ES operation, trading of the DN agent, and pricing.
The constraints are as follows:

(1) Power balance constraints

Pbuy
t − Psell

t + Rt + R+
t − R−

t + Psop
t − Et + et � 0. (2)

(2) ES operation constraints

PESS,min ≤Et ≤PESS,max

PESS,min ≤ et ≤PESS,max{ , (3)

SESSt � SESSt−1 + ηEEt, (4)
SESSt � SESSt−1 −

et
ηe
. (5)

Considering the service life of the ESs, the constraints on the
number of ES charging and discharging cycles are shown in Eqs (6)
and (7):

FIGURE 1
Two-layer trading model framework.
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0≤wE
t + we

t ≤ 1, (6)

∑24
t�1

wE
t − wwE

t−1
∣∣∣∣ ∣∣∣∣≤ ξ. (7)

(3) Trading constraints of DN agents

The day-ahead market contract electricity quantity and real-
time EM trading must meet the constraints of upper and lower limits
of trading power, as shown below:

0≤Rt ≤Rt
max, (8)

0≤R+
t ≤ κ+t R

max

0≤R−
t ≤ κ−t R

max{ , (9)

0≤ κ+t + κ−t ≤ 1. (10)

(4) Pricing constraints

The DN agent formulates dynamic electricity prices to lead
trading among SMIP operators. Therefore, it is necessary to impose
constraints on pricing as follows:

cbuy,min ≤ cbuyt ≤ cbuy,max,
csell,min ≤ csellt ≤ csell,max.

{ (11)

To encourage the active participation of SMIP operators in
energy trading, the real-time electricity trading price of the DN agent
needs to be constrained by the average value of the electricity price as

∑T
t�1

csellt

T
≤ cav , (12)

∑K
t�1

cbuyt

K
≥ cav. (13)

3.2 Lower-layer optimization model for
SMIP operators

In the lower-layer model, SMIP operators provide real-time
feedback to the upper-layer agents based on the electricity trading

prices provided by DNs and the real-time energy demands of the
users (Lei et al., 2023). The optimization objective is to minimize the
operating costs as follows:

min ∑
t

csellt Psell
t Δt −∑

t

cbuyt Pbuy
t Δt +∑

t

∑
m

cDEGPDEG
m,t Δt⎡⎣ ⎤⎦. (14)

The optimization model for the lower-layer SMIP operators
mainly imposes constraints on power balance, DEG operation,
SMIP operator trading, and opportunity constraints. Each
constraint is as follows:

(1) Power balance constraints in the SMIP area:

∑
m

PDEG
m,t + PPV

t + PWT
t + Psell

t � Pload
t + Pbuy

t . (15)

(2) DEG operation constraints

PDEG,min
m ≤PDEG

m,t ≤PDEG,max
m . (16)

(3) SMIP operator trading constraints

Psell,min
t ≤Psell

t ≤Psell,max
t , (17)

Pbuy,min
t ≤Pbuy

t ≤Pbuy,max
t . (18)

(4) Opportunity constraints

The prediction of the load, WTs, and PVs is susceptible to
uncontrollable factors such as weather, resulting in forecasting errors.
The level of error is approximately represented by a normal distribution
(Li et al., 2023d). In order to deal with the prediction errors caused by
such uncertainties, the system should have a backup capacity in
operation, which is described in probability with a given confidence level:

P ∑
m

PDEG
m,t + RDEG

m,t[ ] + PPV
t + δPVt[ ] + PWT

t + δWT
t[ ]⎧⎨⎩

+ Psell
t ≥Pload

t + δloadt + Pbuy
t

⎫⎬⎭ ≥ α, (19)

where P{} represents the probability at a given confidence level.
The proposed model cannot be solved because of the presence of

FIGURE 2
Solving process of the model.
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random variables; then, the opportunity constraint is converted into
a deterministic equivalent constraint as

∑
m

PDEG
m,t + RDEG

m,t[ ] + PPV
t + PWT

t + Psell
t ≥ Pload

t + Pbuy
t

+ F−1 α( )
���������������������
σPV( )2 + σWT( )2 + σ load( )2

√
, (20)

where F−1(α) represents the quantile point α under the standard
normal distribution function.

4 Solution process of the
proposed model

In the constructed two-layer optimization model, the upper and
lower optimization models are coupled through the electricity
trading price. The upper-layer DN agent, acting as the leader in
the Stackelberg game, optimizes the electricity trading with EM and
SMIP operators based on their own internal demand. The lower-
layer SMIP operators, as followers in the Stackelberg game, optimize
their internal energy consumption based on the electricity trading
price provided by the DN agent.

Due to coupling in the two-layer model in this paper, the KKT
condition transformation (Yang X. et al., 2023) is employed to
convert the original coupled two-layer optimization model into a
single-layer linear programming model. The specific process is
as follows:

csellt Δt − λ2,min
t + λ2,max

t − λ4t � 0, (21)
−cbuyt Δt − λ3,min

t + λ3,max
t + λ4t � 0, (22)

cDEG − ρm,t
min + ρm,t

max − λ4t � 0. (23)

The dual variables above need to satisfy the following
conditions:

ρm,t
min ⊥ PDEG

m,t − PDEG,min
m( ), (24)

ρm,t
max ⊥ PDEG,max

m − PDEG
m,t( ), (25)

λ2,min
t ⊥ Psell

t − Psell,min
t( ), (26)

λ2,max
t ⊥ Psell,max

t − Psell
t( ), (27)

λ3,min
t ⊥ Pbuy

t − Pbuy,min
t( ), (28)

λ3,max
t ⊥ Pbuy,max

t − Pbuy
t( ), (29)

λ4t ⊥ Pload
t + Pbuy

t + F−1 α( )
���������������������
σPV( )2 + σWT( )2 + σ load( )2

√(
−∑

m

PDEG
m,t + RDEG

m,t[ ] − PPV
t − PWT

t − Psell
t
⎞⎠. (30)

In the above equations, x⊥y represents that x and y have at most
one non-zero value. To linearize the model, this paper relaxes the
above equations by introducing Boolean variables:

0≤ ρm,t
min ≤Mθm,t

min, (31)
0≤PDEG

m,t − PDEG,min
m ≤M 1 − θm,t

min( ), (32)
0≤PDEG,max

m − PDEG
m,t ≤M 1 − θm,t

max( ), (33)
0≤ ρm,t

max ≤Mθm,t
max, (34)

0≤ λ2,min
t ≤Mθ2,min

t , (35)

0≤Psell
t − Psell,min

t ≤M 1 − θ2,min
t( ), (36)

0≤ λ2,max
t ≤Mθ2,max

t , (37)
0≤Psell,max

t − Psell
t ≤M 1 − θ2,max

t( ), (38)
0≤ λ3,min

t ≤Mθ3,min
t , (39)

0≤Pbuy
t − Pbuy,min

t ≤M 1 − θ3,min
t( ), (40)

0≤ λ3,max
t ≤Mθ3,max

t , (41)
0≤Pbuy,max

t − Pbuy
t ≤M 1 − θ3,max

t( ), (42)
0≤ λ4t ≤Mθ4t , (43)

0≤ Pload
t + Pbuy

t + F−1 α( )
���������������������
σPV( )2 + σWT( )2 + σ load( )2

√(
−∑

m

PDEG
m,t + RDEG

m,t[ ] − PPV
t − PWT

t − Psell
t

⎞⎠≤M 1 − θ4t( ). (44)

In the above equations, θm,t
min, θm,t

max, θ2,tmin, θ2,tmax, θ3,tmin, θ3,tmax, and θ4,t
are the Boolean variables. M is the maximum value. After the
transformation, the objective function still contains two non-linear
terms: ∑

t

csellt Psell
t Δt and ∑

t

cbuyt Pbuy
t Δt. To facilitate the solution, the

strong duality principle (Ouyang et al., 2023) is employed to process the
objective function, resulting in the transformation of the objective
function into a linear programming model.

max ∑
t

csellt Psell
t Δt −∑

t

cbuyt Pbuy
t Δt + ∑

t

π−
t R

−
t Δt −∑

t

π+
t R

+
t Δt −∑

t

πtRtΔt⎛⎝ ⎞⎠ −∑
t

ctrat Psop
t Δt⎡⎢⎢⎣ ⎤⎥⎥⎦

0max

∑
t

∑
m

ρmin
m,t P

DEG,min
m − ρmax

m,t P
DEG,max
m( ) +∑

t

λ2,min
t Psell,min

t − λ2,max
t Psell,max

t( ) +∑
t

λ3,min
t Pbuy,min

t − λ3,max
t Pbuy,max

t( )
+∑

t

λ4t F−1 α( )
����������������������
σPV( )2 + σWT( )2 + σ load( )2√

+ Pload
t − PPV

t − PWT
t − RDEG

m,t( ) −∑
t

∑
m

cDEGPDEG
m,t Δt

+ ∑
t

π−
t R

−
t Δt −∑

t

π+
t R

+
t Δt −∑

t

πtRtΔt⎛⎝ ⎞⎠ −∑
t

ctrat Psop
t Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(45)

By employing the above method, the non-linear dual-layer game
model can be transformed into a mixed-integer linear single-layer
optimization model. The optimal solution can be obtained using the
commercial solver CPLEX (Zhao et al., 2022). The overall solving
process of the model established in this paper is illustrated as follows
and is shown in Figure 2:

Step 1: The outputs of WTs, PVs, and user load demand are
forecasted within the SMIP.

Step 2: The data obtained from the previous step are utilized to
generate EM trading scenarios, including the electricity generation
volume and trading prices in EM.

Step 3: A two-layer optimization trading model is established, with
the upper-layer DN agent as the price leaders and the lower-layer
SMIP operators as the price followers, thus forming the Stackelberg
game optimization model.

Step 4:KKTconditions are applied to transform the dual-layer problem
into a single-layer problem. Dual theory, linear relaxation, and other
methods are combined to convert the optimization model into a more
easily solvable mixed-integer linear programmingmodel. In this step, the
specific electricity trading volume of each stakeholder can be calculated
through the nested solution of electricity price and trading volume.

Step 5: Through the real-time dynamic optimization processes, the
optimal electricity price and trading volume are obtained, and an
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optimal solution for all stakeholders in the Stackelberg game
is achieved.

5 Case study

5.1 Case study system

In order to verify the effectiveness of the proposed method, an
actual DN with SMIPs in Zhejiang Province, China, is utilized to
analyze. The topology of this system is illustrated in Figure 3. Within
this system, DNs and SMIPs are connected through the public
connection point (PCC). The DNs are connected through intelligent
software switches. In this topology, DN agents, SMIP operators, and
the EM conduct mutual trading to meet their respective demands.

In the optimization of trading strategies in this paper, the upper-
layer DN maximizes their profits primarily by adjusting the ESs.
Meanwhile, the two lower-layer SMIP operators minimize their
operational costs by adjusting various distributed resources such as
PVs, WTs, DEGs, and loads. The installed capacity of the distributed
resources is shown in Table 1. The predicted data for the output of
photovoltaics and wind power in SMIPs are shown in Figure 4.

The day-ahead contract electricity price of the DN agent is
shown in Table 2, which is denoted as πt. Due to the flexibility in
actual trading, the real electricity trading price is generally higher
than the day-ahead contract electricity price. Therefore, in this
paper, the real-time buying and selling prices, π+ t and π-t,
respectively, are set at 1.2 πt. The trading price between DN
agents is set at 0.9 πt.

As shown in Table 2, the day-ahead contract electricity price of
the DN agent exhibits continuous fluctuations throughout the day.
The price steadily increases from 2:00, experiences a slight decrease
around noon at 12:00, and reaches its peak in the afternoon at 16:00.
Then, the price gradually decreases to reach the lowest point. This
pattern of price variation indicates that in EM, the electricity price
during different time periods may be influenced by supply and
demand dynamics, peak loads, and other factors. The fluctuations in
prices can have a significant impact on EM stakeholders when
formulating trading strategies. Based on these fluctuations, the
leader–follower model needs to undergo a corresponding
electricity trading strategy design to maximize the interests of the
stakeholders involved.

5.2 Analysis of the pricing strategy and
energy usage optimization

For the study of pricing strategies of the DN agent and energy
optimization for SMIP operators, considering the variations in
electricity consumption across regions, the DN agent provides
pricing methods that align with the differences in electricity
consumption. The pricing strategy of the DN agent for SMIP
operators is illustrated in Figure 5.

As shown in Figure 5, due to the constraints imposed by the
average price, the interests of SMIP operators are protected. Under
this premise, the DN agent formulates trading prices tailored to the
electricity demand of different SMIP operators to maximize their
own benefits, thus achieving a win–win situation.

The internal energy optimization for SMIP operators 1 and
2 is shown in Figure 6 and Figure 7, respectively. Figure 6 and
Figure 7 show that the lower-layer SMIP operators provide
feedback to dynamic trading prices after optimizing the output
of internal generation units. For SMIP operator 1, where the user
exhibits significant fluctuations, the DN agent sets the dynamic
electricity price close to the price floor during periods of
relatively low electricity consumption, such as the time period
from 1:00 to 6:00. During the time period from 7:00 to 9:00, when
the energy demand within SMIP operators begins to increase but
the outputs of WTs and PVs are relatively low, the DN agent
increases the trading price to maximize profits while still meeting
the average price constraint. During the time period from 10:
00 to 18:00, when the energy consumption in SMIP operator 1 is
relatively stable and the outputs of WTs and PVs are high, SMIPs
do not need the electricity urgently, so the trading price is close to
the price floor. During the time period from 19:00 to 24:00, as the
outputs of WTs and PVs cannot meet the required energy
demand and the user-side electricity demand is high, the DN
agent sets the trading price to the price ceiling to maximize its
own profits.

For SMIP operator 2, which is characterized by stable load
fluctuations, the pricing strategy of the DN agent is less influenced
by the load. In this situation, the pricing strategy is determined more
by the outputs of WTs and PVs. During the periods that the outputs
of WTs and PVs are high, such as the time period from 10:00 to 18:
00, the demand for electricity purchase in the SMIP has decreased,
and then, the trading price is set close to the price floor. Conversely,
during the time periods from 1:00 to 9:00 and 17:00 to 20:00, the

FIGURE 3
Physical topology of the system.

TABLE 1 Installed capacity of the distributed resources.

Distributed resource SMIP
operator 1

SMIP
operator 2

DEG 1.2 MW 1.2 MW

PV 150 kW 350 kW

WT 250 kW 530 kW
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outputs ofWTs and PVs are low, the demand for electricity purchase
in the SMIP has increased, and then the trading price is set close to
the price ceiling. Figure 8 shows the optimal trading strategy
between the DN agent and SMIP operators. The agents
determine the day-ahead contract electricity volume based on the
day-ahead data. During the time periods between 1:00–8:00 and 21:
00–24:00, due to the lower day-ahead contract electricity prices, the
DN agent increases the day-ahead contract electricity volume for
trading with EM based on the past experiences. Meanwhile, as
shown in Figure 9, a portion of the purchased electricity is
charged and stored in the ES, and the stored energy is discharged

during time periods with relatively higher electricity prices, allowing
for maximum profit. Additionally, to ensure their own benefits,
SMIP operators increase their electricity purchases from the upper
layer during these time periods. During periods with higher day-
ahead electricity prices, such as from 9:00 to 16:00, the DN agent
reduces the day-ahead contract electricity volume and release stored
energy. The electricity is sold to the adjacent DN agent as a means of
balancing electricity prices. Meanwhile, SMIP operators increase the
generation output of internal distributed power sources and sell
electricity to the upper-layer DN agent. Through this strategy, the
DN agent and SMIP operators achieve a balance of benefits.

FIGURE 4
Forecasted power of WTs and PVs.

TABLE 2 Day-ahead contract electricity price.

Time Price/¥ Time Price/¥ Time Price/¥ Time Price/¥

0:00–1:00 0.32 6:00–7:00 0.44 12:00–13:00 0.8 18:00–19:00 0.63

1:00–2:00 0.31 7:00–8:00 0.46 13:00–14:00 0.74 19:00–20:00 0.52

2:00–3:00 0.29 8:00–9:00 0.53 14:00–15:00 0.81 20:00–21:00 0.5

3:00–4:00 0.34 9:00–10:00 0.59 15:00–16:00 0.83 21:00–22:00 0.46

4:00–5:00 0.37 10:00–11:00 0.68 16:00–17:00 0.81 22:00–23:00 0.42

5:00–6:00 0.41 11:00–12:00 0.76 17:00–18:00 0.74 23:00–24:00 0.37

FIGURE 5
Pricing strategies of the DN agent.
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The optimization results based on the dynamic pricing strategy
under the Stackelberg game are compared with the conventional
fixed-value time-of-use pricing, as shown in Table 3. Under the
former strategy, the profit of DN has increased, and the operating
costs of SMIP operators have decreased. The reason is that the
dynamic pricing strategy under the Stackelberg game can formulate

electricity prices according to the varying electricity demands of
different SMIP operators. The role of lower-layer SMIP operators
has undergone a significant transformation as they are no longer
passive recipients of electricity prices. DN can influence dynamic
trading prices indirectly by autonomously planning energy
demands. By formulating dynamic electricity prices, the initiative

FIGURE 6
Internal energy optimization of SMIP operator 1.

FIGURE 7
Internal energy optimization of SMIP operator 2.

FIGURE 8
Optimal trading between the DN agent and SMIP operators.
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of lower-layer SMIP operators is enhanced, allowing them to actively
participate in the optimization scheduling of the EM.
Simultaneously, this also improves the overall economic
efficiency of DN optimization to a certain extent.

The profits of the upper-layer DN agent in a typical day increased
from the original price of 5724.6 ¥ to 6572.7 ¥, showing an overall
increase of 14.8%. The operating costs of lower-layer SMIP operators
decreased from 17936.55 ¥ and 26661.23 ¥ to 17486.31 ¥ and
25631.24 ¥, resulting in an overall reduction of 2.5% and 3.8%,
respectively. The dynamic pricing can improve the benefits of
different stakeholders. As indicated in Table 1, under the Stackelberg
game-based dynamic pricing strategy, the benefits of the DN agent and
SMIP operators are effectively balanced. On one hand, the DN agent
can dynamically adjust the trading electricity price based on the
electricity demand of SMIP operators, as well as the output of WTs
and PVs, thereby increasing their own profits. On the other hand, SMIP
operators optimize the outputs of internal power generation, as well as
purchasing strategies through responding to the dynamic trading prices,
thereby reducing operating costs. This indicates that under the
Stackelberg game-based dynamic pricing strategy, the DN agent and
SMIP operators have achievedmaximumbenefits, fulfilling the goal of a
win–win situation. The dynamic pricing strategy allows for timely
adjustments based on electricity buying and selling conditions in the
market, enabling the market to respond more rapidly and flexibly.
Moreover, the prices can be adjusted according to different market
conditions, thereby enabling the stakeholders to pinpoint their market
positions and adapt more effectively to market changes. Furthermore,
the prices can also be adjusted based on market demand, supply
conditions, and the strategies of competitors. This can enable the
business to maximize profits, meet market demands, and gain a
greater competitive advantage.

6 Discussion and conclusion

With the rapid development of SMIP, the demand for electricity
trading between SMIPs and DNs is constantly increasing. An
optimal trading electricity strategy with the DN can help the
SMIPs to withstand the operating risks, as well as help the
SMIPs to save the operating costs. For the electricity trading
between the DNs and SMIPs, the existing methods have the
following issues that need to be addressed:

• The electricity trading mode between the DN and SMIP is
unclear. How to characterize the competitive game
relationship between the DN and SMIP in the trading
process needs to be solved.

• In existing electricity trading methods, due to different
optimization objectives of different stakeholders, there are
multivariable nested problems such as the trading price and
trading quantity, which are often difficult to solve.

• The pricing strategies in existing research studies mainly
belong to fixed pricing mechanisms. As the SMIPs continue
to develop, a fixed pricing mechanism will not be able to adapt
to the flexible trend of the EM. Proposing a dynamic pricing
strategy to further improve the profits of stakeholders
is necessary.

To address the above issues, a Stackelberg game-based optimal
electricity trading method for DNs with SMIPs is proposed. Our
conclusions are as follows:

• The proposed two-layer optimization trading model can
characterize the competitive game relationship between the

FIGURE 9
Operation of the ES.

TABLE 3 Comparison of pricing strategies.

Stackelberg game pricing strategy Conventional pricing strategy Optimization result (%)

Profits of the DN agent/¥ 6572.7 5724.6 ↑14.8

Operating costs of SMIP operator 1/¥ 17486.31 17936.55 ↓2.5

Operating costs of SMIP operator 2/¥ 25631.24 26661.23 ↓3.8
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DNs and SMIPs. Furthermore, under the proposed scheme,
the profit of DNs increases by 14.8% in a typical day, and the
operating costs of SMIPs decreased by 2.5% and 3.8%,
respectively.

• The proposed solution method transforms the proposed non-
linear model into a mixed-integer linear programming model,
which solves the coupling–nesting problem of interactive
power and electricity price in the proposed model without
any approximation.

• A dynamic pricing strategy is formulated to address the
disadvantage of fixed pricing mechanisms. Under the
dynamic pricing strategy, the DN agent sets the dynamic
prices to lead the trading behavior of SMIP operators, and
the SMIP operators choose the trading time to follow the
guidance of the DN agent without the passive price reception.

The trading strategy proposed in this paper can effectively
increase the profits of the DN agent while reducing the operating
costs of SMIP operators. In future research, a two-layer robust
optimization trading method for the DN agent and SMIP operators
will be developed with the consideration of the uncertainty of PVs
and WTs to make the methods more comprehensive.
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Glossary

DN distribution network

SMIP small-micro industrial park

KKT Karush–Kuhn–Tucker condition

EM electricity market

Formulas

csell t electricity selling price of DN agents at time t

cbuy t electricity selling price of SMIP operators at time t

Δt optimization time period

ctra t trading price among DN agents at time t

Psop t traded electricity of the adjacent DN agent at time t

Psell t electricity sold by DN agents to SMIP operators at time t

Pbuy t electricity bought by DN agents from SMIP operators at time t

π+ t buying prices of electricity for DN agents from EM at time t

π-t selling prices of electricity for DN agents from EM at time t

πt day-ahead contract price of electricity

R+ t electricity bought by DN agents from EM at time t

R- t electricity sold by DN agents from EM at time t

Rt day-ahead contract electricity

Et ES charging power at time t

et ES discharging power at time t

PESS,max upper limits of ES charging and discharging power

PESS,min lower limits of ES charging and discharging power

SESS t ES capacity value at time t

ηE ES charging efficiency

ηe ES discharging efficiency

wE t ES charging state at time t

we t ES discharging state at time t

ξ number of transitions between ES charging and discharging states

Rmax maximum value of electricity quantity in the market contract trading

κ+ t buying status between DN agents and EM at time t

κ- t selling status between DN agents and EM at time t

cbuy,max upper limits of the electricity buying price setting by the DN agent

cbuy,min lower limits of the electricity buying price setting by the DN agent

csell,max upper limits of the electricity selling price setting by the DN agent

csell,min lower limits of the electricity selling price setting by the DN agent

ES energy storage

DEG diesel generator

PV photovoltaic power

WT wind power

cav average electricity price for DN agents

T time period of electricity sold by the DN agent

K time period of electricity bought by the DN agent

cDEG cost coefficient for DEG

PDEG m,t outputs of the mth DEG at time t

PPV t outputs of PV at time t in the SMIP

PWT t outputs of WT at time t in the SMIP

Pload t load demand at time t in the SMIP

PDEG,
max m

maximum outputs of mth DEG

PDEG,
min m

minimum outputs of mth DEG

Psell, max t upper limit of electricity power sold by SMIP operators at time t

Psell, min t lower limit of electricity power sold by SMIP operators at time t

Pbuy, max t upper limit of electricity power bought by SMIP operators at time t

Pbuy, min t lower limit of the electricity power bought by SMIP operators at
time t

RDEG m,t rotational backup capacity provided by the mth DEG in the SMIP at
time t

δPV t mean values of normal distribution for PV forecasting errors

δWT t mean values of normal distribution for WT forecasting errors

δload t mean values of normal distribution for load forecasting errors

α confidence level

σPV standard deviations of normal distribution for the PV forecasting
errors

σWT standard deviations of normal distribution for the WT forecasting
errors of WTs

σload standard deviations of normal distribution for the load forecasting
errors

ρmax m,t dual variables for the upper limits of the mth DEG outputs at time t

ρmin m,t dual variables for the lower limits of the mth DEG outputs at time t

λ2, min t dual variables for the lower limits of the electricity sold by the DN
agent at time t

λ2, max t dual variables for the upper limits of the electricity sold by the DN
agent at time t

λ3min t dual variables for the lower limits of the bought electricity quantity by
the DN agent at time t

λ3, max t dual variables for the upper limits of the bought electricity quantity
by the DN agent at time t

λ4 t dual variable for the opportunity constraint at time t
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