3,088 research outputs found

    Towards Real-time High-Definition Image Snow Removal: Efficient Pyramid Network with Asymmetrical Encoder-decoder Architecture

    Full text link
    In winter scenes, the degradation of images taken under snow can be pretty complex, where the spatial distribution of snowy degradation is varied from image to image. Recent methods adopt deep neural networks to directly recover clean scenes from snowy images. However, due to the paradox caused by the variation of complex snowy degradation, achieving reliable High-Definition image desnowing performance in real time is a considerable challenge. We develop a novel Efficient Pyramid Network with asymmetrical encoder-decoder architecture for real-time HD image desnowing. The general idea of our proposed network is to utilize the multi-scale feature flow fully and implicitly mine clean cues from features. Compared with previous state-of-the-art desnowing methods, our approach achieves a better complexity-performance trade-off and effectively handles the processing difficulties of HD and Ultra-HD images. The extensive experiments on three large-scale image desnowing datasets demonstrate that our method surpasses all state-of-the-art approaches by a large margin both quantitatively and qualitatively, boosting the PSNR metric from 31.76 dB to 34.10 dB on the CSD test dataset and from 28.29 dB to 30.87 dB on the SRRS test dataset

    MSP-Former: Multi-Scale Projection Transformer for Single Image Desnowing

    Full text link
    Image restoration of snow scenes in severe weather is a difficult task. Snow images have complex degradations and are cluttered over clean images, changing the distribution of clean images. The previous methods based on CNNs are challenging to remove perfectly in restoring snow scenes due to their local inductive biases' lack of a specific global modeling ability. In this paper, we apply the vision transformer to the task of snow removal from a single image. Specifically, we propose a parallel network architecture split along the channel, performing local feature refinement and global information modeling separately. We utilize a channel shuffle operation to combine their respective strengths to enhance network performance. Second, we propose the MSP module, which utilizes multi-scale avgpool to aggregate information of different sizes and simultaneously performs multi-scale projection self-attention on multi-head self-attention to improve the representation ability of the model under different scale degradations. Finally, we design a lightweight and simple local capture module, which can refine the local capture capability of the model. In the experimental part, we conduct extensive experiments to demonstrate the superiority of our method. We compared the previous snow removal methods on three snow scene datasets. The experimental results show that our method surpasses the state-of-the-art methods with fewer parameters and computation. We achieve substantial growth by 1.99dB and SSIM 0.03 on the CSD test dataset. On the SRRS and Snow100K datasets, we also increased PSNR by 2.47dB and 1.62dB compared with the Transweather approach and improved by 0.03 in SSIM. In the visual comparison section, our MSP-Former also achieves better visual effects than existing methods, proving the usability of our method

    Development of Social Life Circumstance of Urban Fringe Settlements in China Central Region

    Get PDF
    Along with the triumphant advance of urbanization in central China central region and disorderly unwinding of cities, urban fringe settlements are incorporated into urban expansion territory, so that villagers became landless peasants. This paper is based on the comparison and analysis on the social life circumstance of traditional settlements and modern urban fringe settlements, thereby exploring the causes and rules of development of social life circumstance of urban fringe settlements in the urbanization process

    Mechanical cooling at the bistable regime of a dissipative optomechanical cavity with a Kerr medium

    Full text link
    In this paper, we study static bistability and mechanical cooling of a dissipative optomechanical cavity filled with a Kerr medium. The system exhibits optical bistability for a wide input-power range with the power threshold being greatly reduced, in contrast to the case of purely dissipative coupling. At the bistable regime, the membrane can be effectively cooled down to a few millikelvin from the room temperature under the unresolved sideband condition, where the effective mechanical temperature is a nonmonotonic function of intracavity intensity and reaches its minimum near the turning point of the upper stable branch. When the system is in the cryogenics environment, the effective mechanical temperature at the bistable regime shows a similar feature as in the room temperature case, but the optimal cooling appears at the monostable regime and approaches the mechanical ground state. Our results are of interest for further understanding bistable optomechanical systems, which have many applications in nonclassical state preparations and quantum information processing.Comment: 10 pages, 5 figure

    Sharpness-Aware Minimization Revisited: Weighted Sharpness as a Regularization Term

    Full text link
    Deep Neural Networks (DNNs) generalization is known to be closely related to the flatness of minima, leading to the development of Sharpness-Aware Minimization (SAM) for seeking flatter minima and better generalization. In this paper, we revisit the loss of SAM and propose a more general method, called WSAM, by incorporating sharpness as a regularization term. We prove its generalization bound through the combination of PAC and Bayes-PAC techniques, and evaluate its performance on various public datasets. The results demonstrate that WSAM achieves improved generalization, or is at least highly competitive, compared to the vanilla optimizer, SAM and its variants. The code is available at https://github.com/intelligent-machine-learning/dlrover/tree/master/atorch/atorch/optimizers.Comment: 10 pages. Accepted as a conference paper at KDD '2
    corecore