253 research outputs found

    Baishouwu Extract Suppresses the Development of Hepatocellular Carcinoma via TLR4/MyD88/NF-κB Pathway

    Get PDF
    Purpose: The root of Cynanchum auriculatum Royle ex Wight, known as Baishouwu, has been widely used for a tonic supplement since ancient times. The current study was performed to explore the effect of Baishouwu extract on the development of experimental hepatocellular carcinoma (HCC) and the potential mechanism involved.Methods: Rats were injected diethylnitrosamine (DEN) to initiate the multistep hepatocarcinogenesis. Animals were treated concurrently with Baishouwu extract given daily by oral gavage for 20 weeks to evaluate its protective effects. Time series sera and organ samples from each group were collected to evaluate the effect of Baishouwu extract on hepatic carcinogenesis.Results: It was found that Baishouwu extract pretreatment successfully attenuated liver injury induced by DEN, as shown by decreased levels of serum biochemical indicators (AST, ALT, ALP, TP, and T-BIL). Administration of Baishouwu extract inhibited the fibrosis-related index in serum and live tissue, respectively from inflammation stage to HCC stage after DEN treatment. It significantly reduced the incidence and multiplicity of DEN-induced HCC development in a dose-dependent manner. Macroscopic and microscopic features suggested that pretreatment with Baishouwu extract for 20 weeks was effective in inhibiting DEN-induced inflammation, liver fibrosis, and HCC. Furthermore, TLR4 overexpression induced by DEN was decreased by Baishouwu extract, leading to the markedly down-regulated levels of MyD88, TRAF6, NF-κB p65, TGF-β1 and α-SMA in hepatitis, cirrhosis, and hepatocarcinoma.Conclusion: In conclusion, Baishouwu extract exhibited potent effect on the development of HCC by altering TLR4/MyD88/ NF-κB signaling pathway in the sequence of hepatic inflammation-fibrosis-cancer, which provided novel insights into the mechanism of Baishouwu extract as a candidate for the pretreatment of HCC in the future

    Global Gene Knockout of Kcnip3 Enhances Pain Sensitivity and Exacerbates Negative Emotions in Rats

    Get PDF
    The Ca2+-binding protein Kv channel interacting protein 3 (KChIP3) or downstream regulatory element antagonist modulator (DREAM), a member of the neuronal calcium sensor (NCS) family, shows remarkable multifunctional properties. It acts as a transcriptional repressor in the nucleus and a modulator of ion channels or receptors, such as Kv4, NMDA receptors and TRPV1 channels on the cytomembrane. Previous studies of Kcnip3-/- mice have indicated that KChIP3 facilitates pain hypersensitivity by repressing Pdyn expression in the spinal cord. Conversely, studies from transgenic daDREAM (dominant active DREAM) mice indicated that KChIP3 contributes to analgesia by repressing Bdnf expression and attenuating the development of central sensitization. To further determine the role of KChIP3 in pain transmission and its possible involvement in emotional processing, we assessed the pain sensitivity and negative emotional behaviors of Kcnip3-/- rats. The knockout rats showed higher pain sensitivity compared to the wild-type rats both in the acute nociceptive pain model and in the late phase (i.e., 2, 4 and 6 days post complete Freund’s adjuvant injection) of the chronic inflammatory pain model. Importantly, Kcnip3-/- rats displayed stronger aversion to the pain-associated compartment, higher anxiety level and aggravated depression-like behavior. Furthermore, RNA-Seq transcriptional profiling of the forebrain cortex were compared between wild-type and Kcnip3-/- rats. Among the 68 upregulated genes, 19 genes (including Nr4a2, Ret, Cplx3, Rgs9, and Itgad) are associated with neural development or synaptic transmission, particularly dopamine neurotransmission. Among the 79 downregulated genes, 16 genes (including Col3a1, Itm2a, Pcdhb3, Pcdhb22, Pcdhb20, Ddc, and Sncaip) are associated with neural development or dopaminergic transmission. Transcriptional upregulation of Nr4a2, Ret, Cplx3 and Rgs9, and downregulation of Col3a1, Itm2a, Pcdhb3 and Ddc, were validated by qPCR analysis. In summary, our studies showed that Kcnip3-/- rats displayed higher pain sensitivity and stronger negative emotions, suggesting an involvement of KChIP3 in negative emotions and possible role in central nociceptive processing

    Changes of outer retinal thickness with increasing age in normal eyes

    No full text
    AIM:To comprehensively investigate the relationship between outer retinal layer thickness and age in normal eyes.METHODS: One hundred normal eyes of 100 subjects who underwent spectral-domain optical coherence tomography(SD-OCT)were included in this retrospective study. The distances between the external limiting membrane(ELM)line and the photoreceptor inner segment/outer segment(IS/OS)line(ELM-IS/OS), the IS/OS line and the cone outer segment tips(COST)line(IS/OS-COST), the COST line and the retinal pigment epithelium(RPE)complex(COST-RPE)and the full retinal thickness(RT)were measured at the fovea and on four quarters. The relationship between thickness and age or sex was then analysed.RESULTS: A thinner RT was observed in women in a multiple regression analysis(men: 234.47±16.79 μm; women: 223.13±15.43 μm). The RT on the nasal quarter and the ELM-IS/OS thickness at the fovea and on the four quarters were significantly and negatively correlated with age. The IS/OS-COST and COST-RPE thicknesses at the fovea and on the four quarters were not significantly correlated with age or sex, respectively. The RT at the fovea was significantly thinner than on the four quarters. The ELM-IS/OS, IS/OS-COST and COST-RPE thicknesses at the fovea were significantly thicker than on the four quarters. CONCLUSION: In normal eyes, the RT thickness on the nasal quarter and the ELM-IS/OS thickness were significantly and negatively correlated with age. The IS/OS-COST and COST-RPE thicknesses were not significantly correlated with age or sex

    Gene Expression Profiling in the Thiamethoxam Resistant and Susceptible B-Biotype Sweetpotato Whitefly, \u3cem\u3eBemisia tabaci\u3c/em\u3e

    Get PDF
    Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females

    Bilateral Habenula deep brain stimulation for treatment-resistant depression: clinical findings and electrophysiological features.

    Get PDF
    Deep brain stimulation (DBS) of structures in the brain's reward system is a promising therapeutic option for patients with treatment-resistant depression (TRD). Recently, DBS of the habenula (HB) in the brain's anti-reward system has also been reported to alleviate depressive symptoms in patients with TRD or bipolar disorder (BD). In this pilot open-label prospective study, we explored the safety and clinical effectiveness of HB-DBS treatment in seven patients with TRD or BD. Also, local field potentials (LFPs) were recorded from the patients' left and right HB to explore the power and asymmetry of oscillatory activities as putative biomarkers of the underlying disease state. At 1-month follow-up (FU), depression and anxiety symptoms were both reduced by 49% (n = 7) along with substantial improvements in patients' health status, functional impairment, and quality of life. Although the dropout rate was high and large variability in clinical response existed, clinical improvements were generally maintained throughout the study [56%, 46%, and 64% reduction for depression and 61%, 48%, and 70% reduction for anxiety at 3-month FU (n = 5), 6-month FU (n = 5), and 12-month FU (n = 3), respectively]. After HB-DBS surgery, sustained improvements in mania symptoms were found in two patients who presented with mild hypomania at baseline. Another patient, however, experienced an acute manic episode 2 months after surgery that required hospitalization. Additionally, weaker and more symmetrical HB LFP oscillatory activities were associated with more severe depression and anxiety symptoms at baseline, in keeping with the hypothesis that HB dysfunction contributes to MDD pathophysiology. These preliminary findings indicate that HB-DBS may offer a valuable treatment option for depressive symptoms in patients who suffer from TRD or BD. Larger and well-controlled studies are warranted to examine the safety and efficacy of HB-DBS for treatment-refractory mood disorders in a more rigorous fashion

    Effect of dispersion on indistinguishability between single-photon wave-packets

    Full text link
    With propagating through a dispersive medium, the temporal-spectral profile of laser pulses should be inevitably modified. Although such dispersion effect has been well studied in classical optics, its effect on a single-photon wave-packet, i.e., the matter wave of a single-photon, has not yet been entirely revealed. In this paper, we investigate the effect of dispersion on indistinguishability of single-photon wave-packets through the Hong-Ou-Mandel (HOM) interference. By dispersively manipulating two indistinguishable single-photon wave-packets before interfering with each other, we observe that the difference of the second-order dispersion between two optical paths of the HOM interferometer can be mapped to the interference curve, indicating that (1) with the same amount of dispersion effect in both paths, the HOM interference curve must be only determined by the intrinsic indistinguishability between the wave-packets, i.e., dispersion cancellation due to the indistinguishability between Feynman paths; (2) unbalanced dispersion effect in two paths cannot be cancelled and will broaden the interference curve thus providing a way to measure the second-order dispersion coefficient. Our results suggest a more comprehensive understanding of the single-photon wave-packet and pave ways to explore further applications of the HOM interference

    Biotin tagging coupled with amino acid-coded mass tagging for efficient and precise screening of interaction proteome in mammalian cells

    Get PDF
    In mammalian cells, when tandem affinity purification (TAP) approach is employed, the existence of untagged endogenous target protein and repetitive washing steps together result in overall low yield of purified/stable complexes and the loss of weakly and transiently interacting partners of biological significance. To avoid the trade-offs involving in methodological sensitivity, precision, and throughput here we introduce an integrated method, biotin tagging coupled with amino acid-coded mass tagging (BioCAT) for highly sensitive and accurate screening of mammalian protein-protein interactions (PPIs). Without the need of establishing a stable cell line, using a short peptide tag which could be specifically biotinylated in vivo, the biotin-tagged target/bait protein was then isolated along with its associates efficiently by streptavidin magnetic microbeads in a single step. In a pulled-down complex amino acid-coded mass tagging (AACT) serves as ‘in-spectra’ quantitative markers to distinguish those bait-specific interactors from non-specific background proteins under stringent criteria. Applying this BioCAT approach, we first biotin-tagged in vivo a multi-functional protein family member, 14-3-3ε, which was expressed at close to endogenous level. Starting with approximately 20 millions of 293T cells which were significantly less than what needed for a TAP run, 266 specific interactors of 14-3-3ε were identified in high confidence

    Herbal Medicine in Uterine Fibroid

    Get PDF
    Uterine fibroids, also known as uterine leiomyoma is the most common benign tumor of the uterus found in women of reproductive age. Uterine fibroids are the cause of major quality-of-life issues for approximately 25% of all women who suffer from clinically significant symptoms of uterine fibroid. Despite the prevalence of fibroid, currently, there are no effective treatment options for fibroid. The lack of understanding of the etiology of fibroid contributes to the scarcity of medical therapies available. Sex steroid hormones, dysregulation of cell signaling pathways, miRNA expression, and cytogenetic abnormalities may all implicate in fibroid etiology. Several herbal medicines have been used as anti-inflammation and antitumor agents. All of them have a common capability to inhibit expression of pro-inflammatory cytokines, proliferative genes, and pro-angiogenetic genes. Exploring herbal medicines as remedies lighten the hope of treatment. In the current review article, we discuss signal transduction pathways activated herbal medicines. We also address the possibility of using herbal medicines for uterine fibroid treatment

    Tetrac and NDAT Induce Anti-proliferation via Integrin αvβ3 in Colorectal Cancers With Different K-RAS Status

    Get PDF
    Colorectal cancer is a serious medical problem in Taiwan. New, effective therapeutic approaches are needed. The selection of promising anticancer drugs and the transition from pre-clinical investigations to clinical trials are often challenging. The deaminated thyroid hormone analog (tetraiodothyroacetic acid, tetrac) and its nanoparticulate analog (NDAT) have been shown to have anti-proliferative activity in vitro and in xenograft model of different neoplasms, including colorectal cancers. However, mechanisms involved in tetrac- and NDAT-induced anti-proliferation in colorectal cancers are incompletely understood. We have investigated possible mechanisms of tetrac and NDAT action in colorectal cancer cells, using a perfusion bellows cell culture system that allows efficient, large-scale screening for mechanisms of drug actions on tumor cells. Although integrin αvβ3 in K-RAS wild type colorectal cancer HT-29 cells was far less than that in K-RAS mutant HCT116 cells, HT-29 was more sensitive to both tetrac and NDAT. Results also indicate that both tetrac and NDAT bind to tumor cell surface integrin αvβ3, and the agents may have different mechanisms of anti-proliferation in colorectal cancer cells. K-RAS status appears to play an important role in drug resistance that may be encountered in treatment with this drug combination
    • …
    corecore