835 research outputs found

    Demonstration of Deutsch's Algorithm on a Stable Linear-Optical Quantum Computer

    Full text link
    We report an experimental demonstration of quantum Deutsch's algorithm by using linear-optical system. By employing photon's polarization and spatial modes, we implement all balanced and constant functions for quantum computer. The experimental system is very stable and the experimental data are excellent in accordance with the theoretical results.Comment: 7 pages, 4 figure

    Cooling mechanical resonators to quantum ground state from room temperature

    Full text link
    Ground-state cooling of mesoscopic mechanical resonators is a fundamental requirement for test of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong and weak coupling regimes. The lowest cooling limit is derived analytically at the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Qm>2.4nthQ_{\mathrm{m}}>2.4n_{\mathrm{th}% }, with QmQ_{\mathrm{m}} being the mechanical quality factor and nthn_{\mathrm{th}} being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when mechanical QQ-frequency product Qmν>1.5×1013Q_{\mathrm{m}}{\nu>1.5}\times10^{13}, and both of the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators

    Detection of gamma-ray emission from the Coma cluster with Fermi Large Area Telescope and tentative evidence for an extended spatial structure

    Full text link
    Many galaxy clusters have giant halos of non-thermal radio emission, indicating the presence of relativistic electrons in the clusters. Relativistic protons may also be accelerated by merger and/or accretion shocks in galaxy clusters. These cosmic-ray (CR) electrons and/or protons are expected to produce gamma-rays through inverse-Compton scatterings or inelastic pppp collisions respectively. Despite of intense efforts in searching for high-energy gamma-ray emission from galaxy clusters, conclusive evidence is still missing so far. Here we report the discovery of ≥200\ge 200 MeV gamma-ray emission from the Coma cluster direction with an unbinned likelihood analysis of the 9 years of {\it Fermi}-LAT Pass 8 data. The gamma-ray emission shows a spatial morphology roughly coincident with the giant radio halo, with an apparent excess at the southwest of the cluster. Using the test statistic analysis, we further find tentative evidence that the gamma-ray emission at the Coma center is spatially extended. The extended component has an integral energy flux of ∼2×10−12 erg cm−2 s−1\sim 2\times 10^{-12}{\rm \ erg\ cm^{-2}\ s^{-1}} in the energy range of 0.2 - 300 GeV and the spectrum is soft with a photon index of ≃−2.7\simeq-2.7. Interpreting the gamma-ray emission as arising from CR proton interaction, we find that the volume-averaged value of the CR to thermal pressure ratio in the Coma cluster is about ∼2%\sim 2\%. Our results show that galaxy clusters are likely a new type of GeV gamma-ray sources, and they are probably also giant reservoirs of CR protons.Comment: 10 pages, 10 figures, Accepted by Physical Review D, more spatial models for the gamma-ray emission are used, systematic checks on the results are adde

    An update on the Pauwels classification

    Get PDF
    • …
    corecore