2,040 research outputs found

    Analytical time-domain model for radio over free space optical (RoFSO) systems considering the scintillation effect

    Get PDF
    This work was supported by the World-Class University (WCU) Program through the National Research Foundation of Korea (R31-10026), and Grant K20901000004-09E0100-00410 funded by the Ministry of Education, Science, and Technology (MEST).An analytical time-domain model is presented to analyze a radio over free space optical (RoFSO) system considering the scintillation effect with a log-normal distribution. This analytical model uses a dual-drive Mach-Zehnder modulator (DD-MZM) and photodetector (PD) for typical optical double sideband (ODSB) and single sideband (OSSB) signals. We show the output current of PD as a function of the summation of each frequency component in time domain. Finally, we calculate the received signal power with respect to the power spectral density (PSD) and derive a closed-form average bit error rate (BER) performance.Peer reviewedFinal Accepted Versio

    Chaotic universe in the z=2 Hovava-Lifshitz gravity

    Full text link
    The deformed z=2 Horava-Lifshitz gravity with coupling constant w leads to a nonrelativistic "mixmaster" cosmological model. The potential of theory is given by the sum of IR and UV potentials in the ADM Hamiltonian formalism. It turns out that adding the UV-potential cannot suppress chaotic behaviors existing in the IR-potential.Comment: 7 pages, 5 figures, version to appear in PR

    Temperature dependence of Mott transition in VO_2 and programmable critical temperature sensor

    Full text link
    The temperature dependence of the Mott metal-insulator transition (MIT) is studied with a VO_2-based two-terminal device. When a constant voltage is applied to the device, an abrupt current jump is observed with temperature. With increasing applied voltages, the transition temperature of the MIT current jump decreases. We find a monoclinic and electronically correlated metal (MCM) phase between the abrupt current jump and the structural phase transition (SPT). After the transition from insulator to metal, a linear increase in current (or conductivity) is shown with temperature until the current becomes a constant maximum value above T_{SPT}=68^oC. The SPT is confirmed by micro-Raman spectroscopy measurements. Optical microscopy analysis reveals the absence of the local current path in micro scale in the VO_2 device. The current uniformly flows throughout the surface of the VO_2 film when the MIT occurs. This device can be used as a programmable critical temperature sensor.Comment: 4 pages, 3 figure

    KIOM-79, an Inhibitor of AGEs–Protein Cross-linking, Prevents Progression of Nephropathy in Zucker Diabetic Fatty Rats

    Get PDF
    Advanced glycation end products (AGEs) have been implicated in the development of diabetic complications, including diabetic nephropathy. KIOM-79, an 80% ethanolic extract obtained from parched Puerariae Radix, gingered Magnolia Cortex, Glycyrrhiza Radix and Euphorbia Radix, was investigated for its effects on the development of renal disease in Zucker diabetic fatty rats, an animal model of type 2 diabetes. In vitro inhibitory effect of KIOM-79 on AGEs cross-linking was examined by enzyme-linked immunosorbent assay (ELISA). KIOM-79 (50 mg/kg/day) was given to Zucker diabetic fatty rats for 13 weeks. Body and kidney weight, blood glucose, glycated hemoglobin, urinary albumin and creatinine excretions were monitored. Kidney histopathology, collagen accumulation, fibrinogen and transforming growth factor-beta 1 (TGF-β1) expression were also examined. KIOM-79 reduced blood glucose, kidney weight, histologic renal damage and albuminuria in Zucker diabetic fatty rats. KIOM-79 prevented glomerulosclerosis, tubular degeneration, collagen deposition and podocyte apoptosis. In the renal cortex, TGF-β1, fibronectin mRNA and protein were significantly reduced by KIOM-79 treatment. KIOM-79 reduces AGEs accumulation in vivo, AGE–protein cross-linking and protein oxidation. KIOM-79 could be beneficial in preventing the progression of diabetic glomerularsclerosis in type 2 diabetic rats by attenuating AGEs deposition in the glomeruli

    In vitro embryo rescue for the production of hypotetraploids after cross between hypotetraploid and tetraploid grape cultivars

    Get PDF
    Consumer demand for seedless grape with high quality and large berry has been increasing. Breeding of hypotetraploid grape was suggested as one of promising methods to satisfy it, but low frequency of hypotetraploid occurrence and low seed germination by abortive embryo were indicated as the major problem to hamper the development of hypotetraploid grape. Hence, this study was carried out to evaluate the basic efficiency of in ovulo embryo culture after the cross between hypotetraploid (‘Hanareum’) and tetraploid (‘Honey Black’ and ‘Kyoho’) grape cultivars on the establishment of hypotetraploid grapes. Embryos and plantlets were hardly obtained in ovules cultured at six after the cross pollination (WAP), but ovules inoculated at 10 WAP produced more embryos as well as plantlets regardless of cross combination. Furthermore, we found that embryo formation was not affected by the basal media in ovules cultured at six WAP, but utilization of specific medium can be more beneficial for embryo formation when ovules were cultured at 10 WAP. A total of 17 plants were obtained from ovules cultured at 10 WAP, and above 50% of plants were identified as hypotetraploid grapes. These results indicate that in vitro embryo rescue after cross pollination between hypotetraploid and tetraploid grape can enhance the efficiency for the breeding of hypotetraploid grapes

    Plastic Shrinkage Properties of Natural Fiber Reinforced Shotcrete

    Get PDF
    Recently, natural hemp fibers have been developed for use in wet or dry mix shotcrete instead of conventional synthetic fibers made from petroleum. Synthetic fibers, which is mainly in polypropylene, has been used for controlling an initial shrinkage cracking in concrete, however, the effect was poor showing a severe plastic shrinkage cracking. Plastic shrinkage cracking is a nonstructural crack that occurs due to the surface drying of concrete in a plastic condition due to rapid evaporation of bleeding water. The volume reduction due to plastic shrinkage and the resulting tensile stress exceeds the tensile strength of the concrete. In particular, plastic shrinkage cracking occurs mainly in large surface area members. It may be evolved from the surface to a considerable depth, or in the case of a very thin structure, it may go all over the depth of the member. In addition, since it is long enough to be easily distinguished by naked eyes and cracks are generated widely, it is not aesthetically pleasing and anxiety about the stability of the concrete can be increased. Also, the plastic shrinkage crack accelerates penetration of chloride and moisture, causing corrosion of the reinforcing bar, and durability of the concrete is lowered. The theoretical effect of natural fibers on plastic shrinkage cracks is that when natural fibers are mixed into concrete, they become wet by absorbing the water. Then, in the pumping, water in the wet natural fiber is supplied to the concrete by the pumping pressure to increase the pumpability. Re-absorbing the water after spraying increases the adhesion and build-up thickness. The absorbed water could be supplied to the shotcrete and resulted in reducing a plastic shrinkage and dry shrinkage. This paper investigates the plastic shrinkage properties of shotcrete containing natural fibers. A series of experimental program were conducted to analysis the theoretical background and to select the optimized natural fiber content
    corecore