270 research outputs found

    Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry

    Get PDF
    Various large-area growth methods for two-dimensional transition metal dichalcogenides have been developed recently for future electronic and photonic applications. However, they have not yet been employed for synthesizing active pixel image sensors. Here, we report on an active pixel image sensor array with a bilayer MoS2 film prepared via a two-step large-area growth method. The active pixel of image sensor is composed of 2D MoS2 switching transistors and 2D MoS2 phototransistors. The maximum photoresponsivity (Rph) of the bilayer MoS2 phototransistors in an 8 7 8 active pixel image sensor array is statistically measured as high as 119.16 AW 121. With the aid of computational modeling, we find that the main mechanism for the high Rph of the bilayer MoS2 phototransistor is a photo-gating effect by the holes trapped at subgap states. The image-sensing characteristics of the bilayer MoS2 active pixel image sensor array are successfully investigated using light stencil projection

    Compositional assessment of carotenoid-biofortified rice using substantial equivalence

    Get PDF
    One important aspect in assessing the safety of genetically modified (GM) crops for human consumption is characterizing their nutrient composition. A Ī²-carotene-biofortified rice was generated by inserting phytoene synthase (Psy) and carotene desaturase (Crtl) genes isolated from Capsicum and Pantoea into the genome of a conventional variety of rice (Nakdongbyeo). Nutrients (proximates, amino acids, fatty acids, minerals, and vitamins), anti-nutritive components (trypsin inhibitors and phytic acid), and ferulic acid in GM rice were compared with those in the parent line Nakdongbyeo. Statistical comparisons to test for equivalence showed that all of the analyzed components in the GM plants were equivalent to those in its non-transgenic counterpart, and most nutritional components fell within the range of values reported for other commercial lines, indicating the safety of the GM plant.Key words: Genetically modified crop, Ī²-Carotene, Transgenic rice, Nutrient, Substantial equivalence

    Impacts of coexisting bronchial asthma on severe exacerbations in mild-to-moderate COPD : results from a national database

    Get PDF
    Acknowledgments The authors would like to thank Kyungjoo Kim for the confident statistical analyses in this work. This study was supported by a grant (2014P3300300) from the Korea Centers for Disease Control and Prevention. The abstract of this paper was presented at the Asian Pacific Society of Respirology 20th Congress as an oral presentation with interim findings. The posterā€™s abstract was published in ā€œPoster Abstractsā€ in Respirology.Peer reviewedPublisher PD

    PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis

    Get PDF
    Background PTEN-induced kinase 1 (PINK1) is a serine/threonine-protein kinase in mitochondria that is critical for mitochondrial quality control. PINK1 triggers mitophagy, a selective autophagy of mitochondria, and is involved in mitochondrial regeneration. Although increments of mitochondrial biogenesis and activity are known to be crucial during differentiation, data regarding the specific role of PINK1 in osteogenic maturation and bone remodeling are limited. Methods We adopted an ovariectomy model in female wildtype and Pink1āˆ’/āˆ’ mice. Ovariectomized mice were analyzed using micro-CT, H&E staining, Massonā€™s trichrome staining. RT-PCR, western blot, immunofluorescence, alkaline phosphatase, and alizarin red staining were performed to assess the expression of PINK1 and osteogenic markers in silencing of PINK1 MC3T3-E1 cells. Clinical relevance of PINK1 expression levels was determined via qRT-PCR analysis in normal and osteoporosis patients. Results A significant decrease in bone mass and collagen deposition was observed in the femurs of Pink1āˆ’/āˆ’ mice after ovariectomy. Ex vivo, differentiation of osteoblasts was inhibited upon Pink1 downregulation, accompanied by impaired mitochondrial homeostasis, increased mitochondrial reactive oxygen species production, and defects in mitochondrial calcium handling. Furthermore, PINK1 expression was reduced in bones from patients with osteoporosis, which supports the practical role of PINK1 in human bone disease. Conclusions In this study, we demonstrated that activation of PINK1 is a requisite in osteoblasts during differentiation, which is related to mitochondrial quality control and low reactive oxygen species production. Enhancing PINK1 activity might be a possible treatment target in bone diseases as it can promote a healthy pool of functional mitochondria in osteoblasts.So-Young Lee received National Research Foundation Grant of Korea (NRF2019R1A2C4070492), funded by the Korean government (https://www.nrf.re.kr) for this work. Soonchul Lee received National Research Foundation Grant of Korea (NRF-2019R1C1C1004017), funded by the Korean government (https://www.nrf.re.kr) for this work
    • ā€¦
    corecore